High-density lipoprotein attenuates lipopolysaccharide-induced IL-1β activation via scavenger receptor class B type 1.

高密度脂蛋白通过 B 型清道夫受体 1 类减弱脂多糖诱导的 IL-1β 活化

阅读:12
作者:Deng Haoyu, Liang Wan Yi, Chen Leqi, Huang Kate, Mccallum Rylan, Rensen Patrick C N, Boyd John H, Trinder Mark, Brunham Liam R
Sepsis is the dysregulated immune response to an infection and is a leading cause of mortality. Low levels of high-density lipoprotein (HDL) cholesterol are associated with increased risk of death from sepsis, and increasing levels of HDL by inhibition of cholesteryl ester transfer protein (CETP) has been shown to decrease mortality in mouse models of sepsis. The objective of this study was to investigate the cellular mechanisms by which CETP inhibition and HDL lead to improved survival during sepsis. We found that HDL inhibits lipopolysaccharide (LPS)-induced activation of IL-1β in a mouse model of sepsis. The activation of IL-1β was dependent on the activity of scavenger receptor class B type 1 (SR-B1), and knockdown of SR-B1 significantly attenuated LPS-induced production of IL-1β in macrophages. Additionally, we found that LPS-induced SR-B1 internalization occurs through the endosome-lysosome pathway, which is also likely responsible for LPS degradation in the macrophages. Furthermore, we revealed that raising HDL by CETP inhibition markedly enhanced HDL-mediated anti-inflammatory effects in response to LPS stimulation, and these effects were not due to CETP itself but rather were HDL-dependent. Finally, we show that pharmacological inhibition of CETP significantly improved endotoxemia-induced mortality by inhibiting IL-1β production in the liver and circulation after LPS injection. Pathologically, CETP inhibition attenuated LPS-induced diffuse alveolar damage and hepatocyte necrosis, which may contribute to the improved mortality in mice treated with the CETP inhibitor anacetrapib. Taken together, our findings uncover a cellular mechanism by which HDL attenuates LPS-induced pro-inflammatory response via SR-B1-mediated LPS degradation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。