Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease that leads to destruction of alveoli and replacement by fibrotic tissue. Metabolic profiling of lung tissue and serum from patients with IPF has revealed that levels of tricarboxylic acid cycle metabolites such as succinate are altered in patients with IPF. In our study, we aim to evaluate the role of succinate and its receptor-succinate receptor 1 (SUCNR1) in the pathogenesis of lung fibrosis, with a focus on fibroblasts, a central cell in IPF. SUCNR1 expression was investigated by using Western blots, qPCR, and in situ hybridisation. In vitro assays with IPF and normal human lung fibroblasts (NHLF) were used to evaluate the effect of succinate treatment on the expression of fibrotic markers, fibroblast-myofibroblast transition, apoptosis, and signaling mechanisms. Studies with the bleomycin mouse model of pulmonary fibrosis were used to evaluate the effect of succinate in vivo. Several cell types in the lung express SUCNR1 including alveolar type II cells, fibroblasts, and macrophages. In IPF patient fibroblasts, succinate treatment increased the expression of fibrosis-associated markers, such as alpha-smooth muscle actin and collagen. Moreover, succinate exaggerated transforming growth factor-beta (TGF-β)-mediated fibroblast-to-myofibroblast transition in NHLF. In vivo, succinate treatment significantly increased collagen accumulation in the lung and enhanced weight loss in bleomycin-treated mice. Importantly, succinate-mediated elevation of fibrosis-associated markers was lost upon knockdown of SUCNR1 or inhibition of ERK activation in IPF patient-derived fibroblasts. Succinate exerted profibrotic effects in vitro and in vivo. Thus, SUCNR1 antagonism may be a potential therapeutic target for the treatment of IPF.NEW & NOTEWORTHY This paper highlights the role of the succinate/SUCNR1 axis in pulmonary fibrosis. Receptor activation leads to profibrotic changes in IPF patient-derived fibroblasts. This finding could also be replicated in a mouse model of pulmonary fibrosis.
Succinate aggravates pulmonary fibrosis through the succinate/SUCNR1 axis.
琥珀酸通过琥珀酸/SUCNR1轴加重肺纤维化
阅读:7
作者:Rajesh Rishi, Mooslechner Agnes Anna, Schweighofer Hannah, Pahernik Svetlana, Lanz Ilse, Atallah Reham, Platzer Wolfgang, Aigner Clemens, Benazzo Alberto, Angiari Stefano, Marsh Leigh, Kwapiszewska Grazyna, Heinemann Akos, Bärnthaler Thomas
| 期刊: | American Journal of Physiology-Lung Cellular and Molecular Physiology | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 May 1; 328(5):L671-L684 |
| doi: | 10.1152/ajplung.00286.2024 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
