Identification and Validation of Biomarkers for Alzheimer's Disease Based on Akt and Wnt Signaling Pathways in Mouse Models.

基于小鼠模型中 Akt 和 Wnt 信号通路的阿尔茨海默病生物标志物的鉴定和验证

阅读:15
作者:Wang Ya-Han, Wu Hong-Yun, Xin Chao, Zhang Kai-Xin, Zhang Ji-Wei, Zhi Hong-Wei
Alzheimer's disease (AD) is a neurodegenerative disease that remains challenging to treat. Akt and Wnt play a role in complex cellular signaling, which is crucial for examining the onset of AD. In this study, we aimed to identify and analyze Akt pathway-related genes (ARGs) and Wnt pathway-related genes (WRGs) as AD biomarkers, determine the effects of ARGs and WRGs on AD, and verify these effects in AD mouse models. We searched for differentially expressed genes in the Gene Expression Omnibus database, constructed candidate gene protein-protein interaction networks, and used least absolute shrinkage and selection operator regression analysis and the support vector machine-recursive feature elimination algorithm to screen key genes. Correlation and functional similarity analyses of key genes, immune infiltration analysis, competing endogenous RNA network construction, and drug prediction of key genes were performed. Expression of key genes in streptozotocin-treated (STZ)-treated AD mice was validated using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Bioinformatics analysis identified five key genes in AD: PRKACA, CDH3, ATP6V0C, DLL1, and CELSR2. Step-down tests, immunohistochemistry, and silver plate staining confirmed successful treatment of STZ-induced AD in mice. According to RT-qPCR analysis, the relative expression of DLL1 mRNA in AD mice was higher than that in control mice, whereas the relative expression of ATP6V0C and PRKACA mRNA in AD mice was lower than that in control mice; this was consistent with the results of bioinformatics analysis (p < 0.05). This study screened and validated AD biomarkers associated with the Akt and Wnt pathways in mouse models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。