Yeast TIA1 coordinates with Npl3 to promote ATG1 translation during starvation.

酵母 TIA1 与 Npl3 协同作用,在饥饿期间促进 ATG1 的翻译

阅读:5
作者:Metur Shree Padma, Song Xinxin, Mehta Sophie, Dialynaki Dimitra, Bhattacharyya Dibyendu, Yin Zhangyuan, Tang Daolin, Klionsky Daniel J
Macroautophagy/autophagy is crucial for cell survival during nutrient starvation. Autophagy requires the coordinated function of several Atg proteins, including the Atg1 kinase, for efficient induction and execution. Recently, several RNA-binding proteins (RBPs) have been shown to post-transcriptionally regulate ATG1. However, a comprehensive understanding of autophagy regulation by RBPs via ATG1 is yet to be elucidated. Here, we utilize an in vitro approach to identify RBPs that specifically interact with ATG1 untranslated regions. We show that Npl3 and Pub1 interact with the ATG1 5' and 3' untranslated regions during nitrogen starvation. Furthermore, Npl3 and Pub1 coordinate to facilitate ATG1 mRNA export to the cytoplasm and its subsequent interaction with the translational machinery. Significantly, in non-small cell lung cancer cell lines, mammalian Pub1, TIA1, also positively regulates ULK1 protein expression and autophagy during serum starvation. Overall, our study highlights the regulatory landscape that fine-tunes Atg1 protein expression to sustain autophagy during nutrient starvation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。