Background: Sepsis-induced acute lung injury (SALI) is a critical clinical challenge with high mortality. Metabolic dysregulation drives SALI pathogenesis, disrupting lung function and energy metabolism. Despite proven benefits, metabolic restoration is underused in sepsis. This study explores chiglitazar's role in balancing metabolism to protect against SALI. Methods: The protective effects of chiglitazar in CLP rats were demonstrated by the survival curve, histological analysis, and immunohistochemical analysis in the lung tissue. Metabolomic and lipidomic analyses of lung tissue samples using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were performed to evaluate metabolic shifts induced by CLP surgery and chiglitazar pretreatment. The mRNA and protein levels of the underlying targets directing nicotinamide adenine dinucleotide (NAD+) and triglyceride synthesis were analyzed by qPCR and Western blotting. To validate the mechanism by which chiglitazar protected against SALI, the SIRT1 inhibitor EX-527 was applied to human normal lung epithelial (BEAS-2B) cells and another batch of rats to observe its reverse effect against chiglitazar's action. Results: Chiglitazar pretreatment significantly restored NAD+ and improved dysregulated lipid metabolism by enhancing the synthesis of triglycerides (TGs) and suppressing accumulated fatty acids (FAs). The metabolic modulation mediated by chiglitazar was associated with the upregulations of the SIRT1/PGC-1α/PPARα/GPAT3 axis. Co-treatment with EX-527 in LPS-stimulated BEAS-2B cells and CLP rats inhibited the effects of chiglitazar on the aforementioned signaling pathways and worsened the protective effects of chiglitazar on lung injury, respectively. Conclusions: Chiglitazar alleviates SALI by restoring NAD+ and TG synthesis, highlighting the balancing of metabolism as a promising therapeutic strategy in the management of SALI.
Integrated Metabolomics and Lipidomics Analysis Reveals the Mechanism Behind the Action of Chiglitazar on the Protection Against Sepsis-Induced Acute Lung Injury.
代谢组学和脂质组学综合分析揭示了奇格列扎对脓毒症引起的急性肺损伤的保护机制
阅读:4
作者:Lu Liu-Liu, Cao Yu-Li, Lu Zhen-Chen, Wu Han, Hu Shan-Song, Ye Bing-Qing, He Jin-Zhi, Di Lei, Chen Xu-Lin, Liu Zhi-Cheng
| 期刊: | Metabolites | 影响因子: | 3.700 |
| 时间: | 2025 | 起止号: | 2025 Apr 25; 15(5):290 |
| doi: | 10.3390/metabo15050290 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
