Identifying conserved mechanisms used by viruses to delay host innate responses can reveal potential targets for antiviral therapeutics. Here, we investigated coronavirus nonstructural protein 15 (nsp15), which encodes a highly conserved endoribonuclease (EndoU). EndoU functions as an immune antagonist by limiting the accumulation of viral replication intermediates that would otherwise be sensed by the host. Despite being a promising antiviral target, it has been difficult to develop small-molecule inhibitors that target the EndoU active site. We generated nsp15 mutants of the coronaviruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mouse hepatitis virus (MHV)-A59 and identified conserved residues within the amino-terminal domain that are required for EndoU activity. Loss of EndoU activity caused the activation of host sensors, which limited viral replication in interferon-responsive cells and attenuated disease in MHV-infected mice. Using transcriptional profiling, we found that MHV EndoU mutant viruses upregulate multiple host sensors, including Z-form nucleic acid-binding protein 1 (ZBP1). We found that nsp15 mutants induced early, robust ZBP1-mediated necroptosis. EndoU mutant viruses also induced ZBP1-independent apoptosis and pyroptosis pathways, causing early, robust cell death that limits virus replication and pathogenesis. Overall, we document the importance of the amino-terminal domain for EndoU function. We also highlight the importance of nsp15/EndoU activity for evading host sensors, delaying cell death, and promoting pathogenesis.
Coronavirus endoribonuclease antagonizes ZBP1-mediated necroptosis and delays multiple cell death pathways.
冠状病毒核糖核酸内切酶拮抗 ZBP1 介导的坏死性凋亡,并延缓多种细胞死亡途径
阅读:11
作者:Evdokimova Monika, Feng Shuchen, Caobi Allen, Moreira Fernando R, Jones Dakota, Alysandratos Konstantinos-Dionysios, Tully Ena S, Kotton Darrell N, Boyd David F, Banach Bridget S, Kirchdoerfer Robert N, Saeed Mohsan, Baker Susan C
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2025 | 起止号: | 2025 Mar 11; 122(10):e2419620122 |
| doi: | 10.1073/pnas.2419620122 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
