Sexual dimorphism of autophagy in Syrian hamster Harderian gland culminates in a holocrine secretion in female glands

叙利亚仓鼠哈德氏腺自噬的性别二态性最终导致雌性腺体产生全分泌

阅读:4
作者:Ignacio Vega-Naredo, Beatriz Caballero, Verónica Sierra, Covadonga Huidobro-Fernández, David de Gonzalo-Calvo, Marina García-Macia, Delio Tolivia, María Josefa Rodríguez-Colunga, Ana Coto-Montes

Abstract

The Syrian hamster Harderian gland (HG) has a large porphyrin metabolism with a sexual dimorphism, showing male HGs much lower porphyrin concentrations than female glands. Damage derived from this production of porphyrins, displayed by reactive oxygen species, forces the gland to develop morphological changes that must have a physiological significance. Thus, oxidative stress is present in two states: mild oxidative stress in male HGs and extreme oxidative stress in female HGs. Cathepsins data gave indirect indications about the presence of programmed cell death affecting the lysosomal pathway, especially in female HGs, which showed an accumulation of autophagic bodies. Our results showed different degrees of autophagy in Syrian hamster HGs depending on sex and probably controlled by the redox-sensitive transcription factors: NFkappaB and p53. The discovery of these sexual dimorphisms in redox signaling and in autophagy corroborates previous findings and underlines the key role of reactive oxygen species in the regulation of autophagy. In addition, in this paper we propose a physiological significance for these phenomena: male HGs develop a survival autophagy, while in female HGs, autophagy culminates in a detachment-derived cell death that plays a central role in its secretory activity, leading to a massive glandular secretion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。