Cognitive function in aging is heterogeneous: while some older individuals develop significant impairments and dementia, others remain resilient and retain cognitive function throughout their lifespan. The molecular mechanisms that underlie these divergent cognitive trajectories, however, remain largely unresolved. Here, we utilized a high-resolution home-cage-based cognitive testing paradigm to delineate mechanisms that contribute to age-related cognitive heterogeneity. We cognitively stratified aged C57Bl/6N male mice by cognitive performance into intact (resilient) or impaired subgroups based on young performance benchmarks. Cognitively impaired males exhibited marked reactive gliosis in the hippocampus, characterized by microglial activation, increased astrocyte arborization, and elevated transcriptional expression of reactivity markers. These changes were accompanied by increased markers of cellular senescence and the associated senescence-associated secretory phenotype (SASP) in impaired animals, including p16(INK4a), SASP factors (e.g., Il-6, Il-1b, Mmp3), and SA-β-gal staining in the hippocampus. Notably, clearance of senescent cells using senolytic agents dasatinib and quercetin ameliorated the heterogeneity in cognitive performance observed with age and attenuated impairment-associated gliosis, senescence markers, and mitochondrial dysfunction. Aged female mice could not be stratified into subgroups yet showed increased neuroinflammation with age that was not resolved with senolytics. Collectively, our findings implicate cellular senescence as a central driver of sex-specific neuroinflammation that drives divergent cognitive trajectories in aging. Thus, we demonstrate that senolytic treatment is an effective therapeutic strategy to mitigate cognitive impairment by reducing neuroinflammation and associated metabolic disturbances.
Cellular Senescence Is a Central Driver of Cognitive Disparities in Aging.
细胞衰老是导致老年人认知能力差异的核心因素
阅读:4
作者:Baier Matthew P, Ranjit Rojina, Owen Daniel B, Wilson Jenna L, Stiles Megan A, Masingale Anthony M, Thomas Zachary, Bredegaard Anne, Sherry David M, Logan Sreemathi
| 期刊: | Aging Cell | 影响因子: | 7.100 |
| 时间: | 2025 | 起止号: | 2025 Jun;24(6):e70041 |
| doi: | 10.1111/acel.70041 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
