Peptides are an emerging class of biologics for cancer immunotherapy; however, their clinical translation is hindered by poor binding kinetics, bioavailability, and short plasma half-life compared to their corresponding antibodies. Nanoparticles present potential solutions but face scale-up difficulties due to complexity. Here, a translatable, modular nanoparticle scaffold is presented for peptide-based immune checkpoint inhibitors (ICIs). This platform is based on a simple structure of generation 7 (G7) poly(amidoamine) (PAMAM) dendrimers conjugated with engineered peptides (dendrimer-peptide conjugates, DPCs). DPCs functionalized with multiple copies of a programmed death-ligand 1 (PD-L1)-binding peptide exhibited significantly enhanced avidity-based binding kinetics and in vitro specificity, in addition to the substantially prolonged plasma half-life in vivo. Notably, a series of in vivo experiments revealed that DPCs displayed selective tumor accumulation and high efficacy, without apparent toxicity, when applied to a syngeneic mouse model bearing mouse oral carcinoma (MOC1) tumors. The results indicate that the DPC platform significantly improves the antagonistic effect and in vivo behaviors of the PD-L1-binding peptides, which can be potentially applied to virtually any peptide-based ICIs. The DPC platform's simplicity and modular nature will likely increase the potential of its clinical translation and ultimately enable precision/personalized cancer immunotherapy.
Dendrimer Conjugates with PD-L1-Binding Peptides Enhance In Vivo Antitumor Immune Response.
树状聚合物缀合物与 PD-L1 结合肽增强体内抗肿瘤免疫反应
阅读:4
作者:Kim DaWon, Lee Jin Woong, Rawding Piper A, Iida Mari, Kim Carter, Kostecki Kourtney L, Poellmann Michael J, Crossman Bridget, Liu Ashley S, Kim YoungSoo, Wheeler Deric L, Hong Seungpyo
| 期刊: | Advanced Healthcare Materials | 影响因子: | 9.600 |
| 时间: | 2025 | 起止号: | 2025 Aug;14(20):e2500551 |
| doi: | 10.1002/adhm.202500551 | 研究方向: | 肿瘤 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
