Harnessing engineered exosomes as METTL3 carriers: Enhancing osteogenesis and suppressing lipogenesis in bone marrow mesenchymal stem cells for postmenopausal osteoporosis treatment.

利用工程化外泌体作为 METTL3 载体:增强骨髓间充质干细胞的成骨作用并抑制其脂肪生成,用于治疗绝经后骨质疏松症

阅读:5
作者:Li Tao, Zhao Jiangminghao, Yuan Jinghong, Ding Rui, Yang Guoyu, Cao Jian, Zhao Xiaokun, Liu Jiahao, Liu Yuan, Xu Peichuan, Deng Jianjian, Miao Xinxin, Cheng Xigao
Postmenopausal osteoporosis (PMOP), a prevalent skeletal disorder among women post-menopause, has emerged as a pressing global public health concern. Exosomes derived from serum have exhibited encouraging therapeutic potential in addressing PMOP, albeit with underlying mechanisms requiring deeper exploration. To elucidate these mechanisms, we devised a mouse model by surgically inducing ovariectomy and isolated exosomes from serum samples. Subsequently, we employed qRT-PCR, Western blotting, and immunofluorescence analysis to quantify relevant gene and protein expression patterns. To assess the biological effects on treated cells and tissues, we utilized ARS staining, oil red O staining, and micro-CT analysis. Additionally, we examined the METTL3/FOXO1 m6A site interaction and the FOXO1/YTHDF1 complex using dual-luciferase reporter assays and RIP assays. The m6A modification levels of FOXO1 were quantified via MeRIP-PCR. Furthermore, we engineered bone marrow mesenchymal stem cell exosomes by loading abundant METTL3 mRNA and decorating their surfaces with bone-targeting peptides. The successful synthesis and bone-targeting capabilities of these modified exosomes were validated through electron microscopy, in vivo imaging, and immunofluorescence staining. Our findings reveal that METTL3, in collaboration with YTHDF1 within serum-derived exosomes, enhances FOXO1 gene transcription by fostering m6A modification of FOXO1. This, in turn, promotes osteogenic differentiation of bone marrow mesenchymal stem cells while inhibiting lipogenic differentiation. Notably, our engineered exosomes, BT-oe-METTL3-EXO, not only harbor high levels of METTL3 but also demonstrate exceptional bone-targeting efficiency. In vitro studies demonstrated that BT-oe-METTL3-EXO significantly mitigated bone mass loss induced by ovariectomy in mice, bolstered osteogenic differentiation of mouse bone marrow mesenchymal stem cells, and inhibited lipogenic differentiation. Collectively, our research underscores the pivotal regulatory function of serum-derived exosomes in human bone marrow stem cells (hBMSCs) and underscores the promising therapeutic potential of BT-oe-METTL3-EXO for combating postmenopausal osteoporosis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。