Bone loss and microstructural destruction in elderly men are associated with fractures and high mortality. While testosterone (Tes) is considered to be possibly protective, its regulatory mechanism in bone remodeling remains unclear. Here, bone microarchitectural analysis indicates that elderly men exhibit reduced cortical and trabecular thickness with elevated cortical porosity, particularly at the superior femoral head near the medial acetabulum. Serum profiling of 352 individuals showed that low Tes levels (<9.415 nmol·L(-1)) are associated with higher risk of bone loss. In vivo, tail-suspended mice lacking osteoblastic androgen receptor (AR) displayed similar femoral deterioration, with decreased trabecular bone and increased cortical porosity. Mechanistically, Tes enhances osteoblastic differentiation via AR-mediated upregulation of tenascin-C (TNC). Molecular docking suggests the fibrinogen C-terminal domain of TNC inhibits osteoclastogenesis by binding integrin αV, blocking adhesion of RGD-containing proteins. A synthetic peptide (pep2) mimicking this domain preserved bone architecture in osteoblast-specific Ar-knockout, tail-suspended mice. Moreover, elevated serum extracellular vesicle amyloid precursor protein, secondary to Tes-AR-TNC decline and osteoclast overactivation, emerged as a biomarker of bone loss when combined with low Tes. This study identifies the Tes-AR-TNC axis as a key regulator of male bone remodeling, offering insights into fracture risk assessment and targeted interventions in bone destruction.
Testosterone Delays Bone Microstructural Destruction via Osteoblast-Androgen Receptor-Mediated Upregulation of Tenascin-C.
睾酮通过成骨细胞-雄激素受体介导的腱生蛋白-C上调来延缓骨微结构破坏
阅读:8
作者:Xie Yong, Pan Meng, Zhang Zeyuan, Zhang Licheng, Liu Haotian, Wang Xia, Lu William W, Tang Peifu, Ge Wei
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Aug;12(31):e01518 |
| doi: | 10.1002/advs.202501518 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
