Patient-Derived Gastric Cancer Assembloid Model Integrating Matched Tumor Organoids and Stromal Cell Subpopulations.

整合匹配肿瘤类器官和基质细胞亚群的患者来源胃癌组装模型

阅读:16
作者:Shapira-Netanelov Irit, Furman Olga, Rogachevsky Dikla, Luboshits Galia, Maizels Yael, Rodin Dmitry, Koman Igor, Rozic Gabriela A
Background/Purpose: Conventional three-dimensional in vitro tumor models often fail to fully capture the complexity of the tumor microenvironment, particularly the diverse populations of cancer-associated fibroblasts that contribute to poor prognosis and treatment resistance. The purpose of this study is to develop a patient-specific gastric cancer assembloid model that integrates tumor epithelial cells with matched stromal cell subtypes, each derived using tailored growth media to enhance cancer preclinical research and advance personalized therapeutic strategies. Methods: Tumor tissue was dissociated, and cells expanded in media for organoids, mesenchymal stem cells, fibroblasts, or endothelial cells. The resulting tumor-derived subpopulations were co-cultured in an optimized assembloid medium supporting each cell type's growth. Biomarker expression was assessed by immunofluorescence staining, and transcriptomic profiles were analyzed by RNA sequencing. Drug responsiveness was evaluated using cell viability assays following treatment with various therapeutic agents. Results: The optimized co-culture conditions yielded assembloids that closely mimicked the cellular heterogeneity of primary tumors, confirmed by the expression of epithelial and stromal markers. Compared to monocultures, the assembloids showed higher expression of inflammatory cytokines, extracellular matrix remodeling factors, and tumor progression-related genes across different organoids and stromal ratios. Drug screening revealed patient- and drug-specific variability. While some drugs were effective in both organoid and assembloid models, others lost efficacy in the assembloids, highlighting the critical role of stromal components in modulating drug responses. Conclusions: This assembloid system offers a robust platform to study tumor-stroma interactions, identify resistance mechanisms, and accelerate drug discovery and personalized therapeutic strategies for gastric cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。