MicroRNA-375 modulates neutrophil chemotaxis via targeting Cathepsin B in zebrafish.

MicroRNA-375 通过靶向斑马鱼中的组织蛋白酶 B 来调节中性粒细胞趋化性

阅读:4
作者:Wang Decheng, Wang Tianqi, Kim Daniel, Tan Shelly, Liu Sheng, Wan Jun, Deng Qing
Neutrophils are crucial for defense against numerous infections, and their migration and activations are tightly regulated to prevent collateral tissue damage. We previously performed a neutrophil-specific miRNA overexpression screening and identified several microRNAs, including miR-375, as potent modulators for neutrophil activity. Overexpression of miR-375 decreases neutrophil motility and migration in zebrafish and human neutrophil-like cells. We screened the genes downregulated by miR-375 in zebrafish neutrophils and identified that Cathepsin B (Ctsba) is required for neutrophil motility and chemotaxis upon tail wounding and bacterial infection. Pharmacological inhibition or neutrophil-specific knockout of ctsba significantly decreased the neutrophil chemotaxis in zebrafish and survival upon systemic bacterial infection. Notably, Ctsba knockdown in human neutrophil-like cells also resulted in reduced chemotaxis. Inhibiting integrin receptor function using RGDS rescued the neutrophil migration defects and susceptibility to systemic infection in zebrafish with either miR-375 overexpression or ctsba knockout. Our results demonstrate that miR-375 and its target Ctsba modulate neutrophil activity during tissue injury and bacterial infection in vivo, providing novel insights into neutrophil biology and the overall inflammation process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。