Teravoxel-scale, cellular-resolution images of cleared rodent brains acquired with light-sheet fluorescence microscopy have transformed the way we study the brain. Realizing the potential of this technology requires computational pipelines that generalize across experimental protocols and map neuronal activity at the laminar and subpopulation-specific levels, beyond atlas-defined regions. Here, we present artficial intelligence-based cartography of ensembles (ACE), an end-to-end pipeline that employs three-dimensional deep learning segmentation models and advanced cluster-wise statistical algorithms, to enable unbiased mapping of local neuronal activity and connectivity. Validation against state-of-the-art segmentation and detection methods on unseen datasets demonstrated ACE's high generalizability and performance. Applying ACE in two distinct neurobiological contexts, we discovered subregional effects missed by existing atlas-based analyses and showcase ACE's ability to reveal localized or laminar neuronal activity brain-wide. Our open-source pipeline enables whole-brain mapping of neuronal ensembles at a high level of precision across a wide range of neuroscientific applications.
A deep learning pipeline for three-dimensional brain-wide mapping of local neuronal ensembles in teravoxel light-sheet microscopy.
用于在太体素光片显微镜中对局部神经元集合进行三维全脑映射的深度学习流程
阅读:8
作者:Attarpour Ahmadreza, Osmann Jonas, Rinaldi Anthony, Qi Tianbo, Lal Neeraj, Patel Shruti, Rozak Matthew, Yu Fengqing, Cho Newton, Squair Jordan, McLaurin JoAnne, Raffiee Misha, Deisseroth Karl, Courtine Gregoire, Ye Li, Stefanovic Bojana, Goubran Maged
| 期刊: | Nature Methods | 影响因子: | 32.100 |
| 时间: | 2025 | 起止号: | 2025 Mar;22(3):600-611 |
| doi: | 10.1038/s41592-024-02583-1 | 研究方向: | 神经科学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
