Teravoxel-scale, cellular-resolution images of cleared rodent brains acquired with light-sheet fluorescence microscopy have transformed the way we study the brain. Realizing the potential of this technology requires computational pipelines that generalize across experimental protocols and map neuronal activity at the laminar and subpopulation-specific levels, beyond atlas-defined regions. Here, we present artficial intelligence-based cartography of ensembles (ACE), an end-to-end pipeline that employs three-dimensional deep learning segmentation models and advanced cluster-wise statistical algorithms, to enable unbiased mapping of local neuronal activity and connectivity. Validation against state-of-the-art segmentation and detection methods on unseen datasets demonstrated ACE's high generalizability and performance. Applying ACE in two distinct neurobiological contexts, we discovered subregional effects missed by existing atlas-based analyses and showcase ACE's ability to reveal localized or laminar neuronal activity brain-wide. Our open-source pipeline enables whole-brain mapping of neuronal ensembles at a high level of precision across a wide range of neuroscientific applications.
A deep learning pipeline for three-dimensional brain-wide mapping of local neuronal ensembles in teravoxel light-sheet microscopy.
用于在太体素光片显微镜中对局部神经元集合进行三维全脑映射的深度学习流程
阅读:15
作者:Attarpour Ahmadreza, Osmann Jonas, Rinaldi Anthony, Qi Tianbo, Lal Neeraj, Patel Shruti, Rozak Matthew, Yu Fengqing, Cho Newton, Squair Jordan, McLaurin JoAnne, Raffiee Misha, Deisseroth Karl, Courtine Gregoire, Ye Li, Stefanovic Bojana, Goubran Maged
| 期刊: | Nature Methods | 影响因子: | 32.100 |
| 时间: | 2025 | 起止号: | 2025 Mar;22(3):600-611 |
| doi: | 10.1038/s41592-024-02583-1 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
