Metallic scaffolds have shown promise in regenerating critical bone defects. However, limitations persist in achieving a modulus below 100âMPa due to insufficient strength. Consequently, the osteogenic impact of lower modulus and greater bone tissue strain (â>â1%) remains unclear. Here, we introduce a metamaterial scaffold that decouples strength and modulus through two-stage deformation. The scaffold facilitates an effective modulus of only 13âMPa, ensuring adaptability during bone regeneration. Followed by a stiff stage, it provides the necessary strength for load-bearing requirements. In vivo, the scaffold induces >â2% callus strain, upregulating calcium channels and HIF-1α to enhance osteogenesis and angiogenesis. 4-week histomorphology reveals a 44% and 498% increase in new bone fraction versus classic scaffolds with 500âMPa and 13âMPa modulus, respectively. This design transcends traditional modulus-matching paradigms, prioritizing bone tissue strain requirements. Its tunable mechanical properties also present promising implications for advancing osteogenesis mechanisms and addressing clinical challenges.
A metamaterial scaffold beyond modulus limits: enhanced osteogenesis and angiogenesis of critical bone defects.
超越模量极限的超材料支架:增强关键骨缺损的成骨和血管生成
阅读:9
作者:Qin Yu, Jing Zehao, Zou Da, Wang Youhao, Yang Hongtao, Chen Kai, Li Weishi, Wen Peng, Zheng Yufeng
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Mar 4; 16(1):2180 |
| doi: | 10.1038/s41467-025-57609-9 | 研究方向: | 心血管 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
