Insulin-like growth factor 1 alleviates high-fat diet-induced myocardial contractile dysfunction: role of insulin signaling and mitochondrial function.

胰岛素样生长因子 1 可缓解高脂饮食引起的心肌收缩功能障碍:胰岛素信号传导和线粒体功能的作用

阅读:5
作者:Zhang Yingmei, Yuan Ming, Bradley Katherine M, Dong Feng, Anversa Piero, Ren Jun
Obesity is often associated with reduced plasma insulin-like growth factor 1 (IGF-1) levels, oxidative stress, mitochondrial damage, and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high-fat diet-induced oxidative, myocardial, geometric, and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low- (10%) or high-fat (45%) diet to induce obesity. High-fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin 6, insulin, and triglyceride, as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end-systolic and end-diastolic diameter, increased wall thickness, and cardiac hypertrophy in high-fat-fed FVB mice. High-fat diet promoted reactive oxygen species generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca(2+) dysregulation (including depressed peak shortening and maximal velocity of shortening/relengthening), prolonged duration of relengthening, and dampened intracellular Ca(2+) rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor and postreceptor signaling molecules insulin receptor substrate 1 (tyrosine/serine phosphorylation), Akt, glycogen synthase kinase 3β, forkhead transcriptional factors, and mammalian target of rapamycin, as well as downregulated expression of mitochondrial proteins peroxisome proliferator-activated receptor-γ coactivator 1α and uncoupling protein 2. Intriguingly, IGF-1 mitigated high-fat-diet feeding-induced alterations in reactive oxygen species, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca(2+) handling, and insulin signaling but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high-fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high-fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly because of preserved cell survival, mitochondrial function, and insulin signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。