Chestnut (Castanea crenata) Inner-Shell Extract Attenuates Barium-Chloride-Induced Injury and Denervation-Induced Atrophy in Skeletal Muscle of Mice.

板栗(Castanea crenata)内壳提取物可减轻氯化钡引起的小鼠骨骼肌损伤和去神经支配引起的萎缩

阅读:5
作者:Kim Jin-Hwa, Chung Eun-Hye, Kim Jeong-Won, Jeong Ji-Soo, Kim Chang-Yeop, Lee Su-Ha, Ko Je-Won, Lim Je-Oh, Kim Tae-Won
Background/Objectives: Chestnut inner shells, traditionally used in Korean and Chinese herbal medicine, contain antioxidant and anti-inflammatory compounds that contribute to complementary medicine. This study aimed to explore the therapeutic effects of chestnut inner-shell extract (CIE) on skeletal muscle injury and atrophy using both in vivo and in vitro models. Methods: We used three experimental models representing distinct pathological mechanisms: (1) barium chloride (BaCl(2))-induced muscle injury to model acute myofiber damage, (2) sciatic nerve transection to model chronic neurogenic muscle atrophy, and (3) H(2)O(2)-treated C2C12 myoblasts to model oxidative-stress-related myogenic impairment. Histological analyses (e.g., hematoxylin and eosin staining and cross-sectional area measurement) and molecular analyses were performed to evaluate the effects of CIE on muscle structure, apoptosis, and oxidative stress. Results: In the BaCl(2) injury model, CIE treatment significantly restored the muscle fiber structure, with muscle protein levels returning to near-normal levels. In the denervation-induced muscle atrophy model, CIE treatment led to a dose-dependent decrease in apoptosis-related factors (especially cleaved caspase-3) and mitigated the Akt/mTOR signaling pathway. In the in vitro oxidative stress model, CIE suppressed the expression of NRF2 and HO-1, which are key oxidative stress response regulators. Conclusions: These findings suggest that CIE may offer therapeutic potential for mitigating skeletal muscle damage, atrophy, and oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。