BACKGROUND: Ischemic stroke (IS) remains a leading cause of long-term disability. Neurovascular regeneration and remodeling of the corticospinal tracts are essential for neurological functional recovery. Zuogui pill (ZGP) has good efficacy in treating cerebral ischemia, but the mechanism remains unclear. PURPOSE: To investigate the effects of ZGP on angiogenesis, neurogenesis, corticospinal tract (CST) remodeling, and further evaluate its mechanisms of action in mice with ischemic stroke. METHODS: Network pharmacology was used to analyze the active components, related targets, and mechanisms of ZGP's action in promoting neurovascular regeneration after ischemic stroke. Using a photothrombotic (PT) stroke mouse model, ZGP's effects on neurological recovery were assessed using behavioral tests. Angiogenesis and neurogenesis were evaluated by immunofluorescence of glucose transporter type 1(Glut-1) +/5-bromo-20-deoxyuridine (BrdU) + vessels and doublecortin (DCX)+/BrdU+ cells. CST remodeling was evaluated through diffusion tensor imaging (DTI). The levels of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and mammalian target of rapamycin (mTOR) expression were tested by Western blot. RESULTS: Network pharmacology identified 94 active ingredients and 83 overlapping targets related to IS and neurovascular regeneration. mTOR was identified as one of the core targets. Behavioral tests demonstrated ZGP significantly reduced error rates in irregular ladder walking (ZGP-H vs Stroke: p=0.003) and shortened sticker removal time (ZGP-H vs Stroke: p=0.003). Immunofluorescence revealed ZGP enhanced angiogenesis (Glut-1+/BrdU+ vessels: ZGP-H vs Stroke, p=0.018), neural progenitor cell proliferation and migration (BrdU+/DCX+ cells: ZGP-H vs Stroke: p=0.014). DTI showed increased fractional anisotropy (FA) in ipsilateral CST regions (ZGP-H vs Stroke: 0.001
Zuogui Pill Promotes Neurovascular Regeneration and Corticospinal Tract Remodeling After Ischemic Stroke.
左归丸促进缺血性脑卒中后神经血管再生和皮质脊髓束重塑
阅读:9
作者:Wu Dan, Yan Xiaohui, Mei Siqi, Hua Hao, Fei Xiaoyu, Xu Xinyu, Liu Yan, Wu Minghua, Zhu Jian, Li Wenlei
| 期刊: | Drug Design Development and Therapy | 影响因子: | 5.100 |
| 时间: | 2025 | 起止号: | 2025 May 21; 19:4221-4243 |
| doi: | 10.2147/DDDT.S518696 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
