Renal fibrosis is a manifestation of the progression of chronic kidney disease (CKD) and chronic inflammation is a main driver in the development of renal fibrosis. Yes-associated protein (YAP), acting as a transcriptional co-activator within the Hippo signaling pathway, has been implicated in renal fibrosis. Enhancer of zeste homolog 2 (EZH2) exhibits high expression level in renal fibrosis induced by unilateral ureteral obstruction (UUO), yet the interplay between YAP and EZH2 in renal fibrosis remains to be elucidated. ZLD1039, a selective inhibitor of EZH2, has demonstrated protective effects against cancer and acute kidney injury (AKI). In this study, we conducted a systemic pharmacological investigation to determine if ZLD1039 treatment mitigates UUO-induced renal inflammation and fibrosis through modulation of the Hippo-YAP pathway. Our results revealed that UUO triggered renal inflammation and collagen deposition, with significant activation of YAP. Notably, ZLD1039 treatment effectively alleviated renal inflammation and fibrosis, while inhibiting the expression and nuclear translocation of YAP. Mechanically, we observed a notable down-regulation of large tumor suppressor homolog 1 (LATS1) in parallel with the up-regulation of EZH2. Furthermore, inhibition of EZH2 by ZLD1039 was linked to the up-regulation of LATS1 expression and YAP inactivation. Similarly, in vitro pharmacological inhibition of EZH2 by ZLD1039 resulted in elevated LATS1 expression and diminished YAP activation. Collectively, our findings suggest that ZLD1039, a selective inhibitor of EZH2, likely attenuates renal inflammation and fibrosis probably by up-regulating LATS1 and inhibiting YAP activation. This mechanistic link between EZH2 and YAP provides a fresh perspective on treating renal fibrosis.
The EZH2 selective inhibitor ZLD1039 attenuates UUO-induced renal fibrosis by suppressing YAP activation.
EZH2 选择性抑制剂 ZLD1039 通过抑制 YAP 激活来减轻 UUO 引起的肾纤维化
阅读:17
作者:Xia Qingling, Xu Fujiang, Zhang Lidan, Ding Wenfei, Liu Jiang, Liu Jing, Chen Minhao, Ou Santao, Xu Yong, Wen Li
| 期刊: | Molecular Biomedicine | 影响因子: | 10.100 |
| 时间: | 2025 | 起止号: | 2025 Jun 6; 6(1):36 |
| doi: | 10.1186/s43556-025-00276-5 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
