RIG-I-Inducing Small Molecules Potently Inhibit HMA-Resistant AML Through Igniting the Overloaded dsRNA Arsenal.

RIG-I 诱导小分子通过激活过载的 dsRNA 武器库,有效抑制 HMA 耐药性 AML

阅读:5
作者:Chen Xueqin, Wu Jiaqi, Li Yuntong, Huang Jiayu, Weng Xiangqin, Wu Jiale, Xiao Shujun, Song Huaxin, Wang Zhengyuan, Yan Ni, Shi Fangfang, Zheng Derun, Tan Kai, Zhang Hesong, Cui Jingyi, Wu Wen, Wu Wei, Zhang Sujiang, Lu Min
DNA hypomethylating agents (HMAs) are widely used to treat acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS), but most treated patients relapse and lack standard treatment options. Using high-throughput screening, the approved all-trans retinoic acid (ATRA) is identified that exhibit high selectivity in killing HMA-resistant AML cells compared to parental cells. Mechanistically, HMA-resistant cells are overloaded with DNA hypomethylation-associated endogenous viral double-stranded RNA (dsRNA) which, however, fails to trigger an anticancer interferon (IFN) immune response due to downregulation of dsRNA sensor retinoic acid-inducible gene I (RIG-I). ATRA compensates for RIG-I expression, thereby re-triggering IFN response and potently inhibiting HMA-resistant AML cell lines, xenograft mice, and patient-derived primary cells. A library of potential RIG-I-inducing compounds is rationally constructed and screened, in which the approved M3 AML treatment drug tamibarotene (TAM) exhibits strikingly 28036-fold selectivity and 779 pm IC(50) in killing HMA-resistant AML cells. ATRA and TAM do not selectively inhibit p53-mutant cancer cells. Together, this study uncovers a common resistance mechanism in HMA-treated AML patients and, in addition, provides highly potent and selective agents that can overcome resistance through re-triggering IFN anticancer immune response.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。