Hepatic stellate cell-specific Kcnma1 deletion mitigates metabolic dysfunction-associated steatotic liver disease progression via upregulating Amphiregulin secretion.

肝星状细胞特异性 Kcnma1 缺失通过上调双调蛋白分泌减轻代谢功能障碍相关的脂肪肝疾病进展

阅读:4
作者:Zou Yunhan, Wu Jiaoxiang, Cheng Sheng, Cheng Daqing, Chen Taoying, Guo Xirong, Tang Li, Su Xianbin, Zhang Man, Zhang Xin, Liu Ying, Zhang Jin, Bao Qun, Hou Shangwei, Sun Peng, Li Yong, Han Bo
OBJECTIVE: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health concern, with limited effective treatments. KCNMA1 potassium channel has been implicated in the pathogenesis of various metabolic diseases. However, whether and how KCNMA1 regulates MASLD have been elusive. METHODS: Global, hepatic stellate cells (HSCs)-specific, and hepatocyte-specific Kcnma1 knockout mice were fed either a standard chow or a high-fat diet (HFD). Serum and liver tissues were collected and analyzed by biochemical assay, histology, qPCR and western blotting. HSCs conditioned medium (CM) treatment hepatocytes experiment model and three-dimensional (3D) hepatocytes-HSCs spheroids were employed to study lipid accumulation in hepatocytes. A Cytokine Antibody Array was used to analyze the cytokine profile. RESULTS: Our study demonstrated that global Kcnma1 deletion prevented diet-induced hepatic steatosis and improved insulin sensitivity. Further analyses using HSC-specific and hepatocyte-specific Kcnma1 knockout MASLD mouse models revealed that the protective effect against hepatic steatosis was predominantly mediated by Kcnma1 deletion in HSCs, rather than in hepatocytes. CM transfer experiment and 3D spheroid studies show Kcnma1 deletion effectively prevents lipid accumulation in hepatocytes. Mechanically, Kcnma1-deficient HSCs secrete Amphiregulin (AREG) to regulate lipid metabolism in hepatocytes via epidermal growth factor receptor (EGFR) signaling. Of clinical significance, AREG levels were notably reduced in the liver tissue of MASLD patients, while injection of recombinant AREG protein significantly ameliorated MASLD in mice. CONCLUSIONS: Our study uncovers a novel mechanism in which Kcnma1 deletion in HSCs enhances AREG secretion, thereby reducing lipid accumulation in hepatocytes through the AREG/EGFR signaling, ultimately inhibiting the progression of MASLD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。