Umbilical Cord Mesenchymal Stem Cells Attenuate Podocyte Injury in Diabetic Nephropathy Rats by Inhibiting Angpltl4/Integrin β3 in the Glomerulus.

脐带间充质干细胞通过抑制肾小球中的Angpltl4/整合素β3来减轻糖尿病肾病大鼠的足细胞损伤

阅读:6
作者:Liu Shiyuan, Meng Mingyao, Huang Chunkai, He Lijia, Wang Pu, Tang Zhe, Ran Xi, Gao Hui, Guo Yangfan, He Yan, Chen Jian, Hu Haiyan, He Shan, Zhao Yiyi, Hou Zongliu, Li Lin, Li Wenhong, Wang Wenju, Wang Xiaodan
In this study, we investigated the therapeutic effects and mechanisms of umbilical cord mesenchymal stem cells (UCMSCs) in diabetic nephropathy (DN) ZDF (FA/FA) rats. The therapeutic effects were assessed by renal function tests, the urinary albumin-creatinine ratio, PAS staining, electron microscopy, and TGF-β1 expression in renal tissue. Subsequently, podocyte injury in renal tissue was detected by immunofluorescence staining for podocin. To further explore the underlying mechanism, serum Angptl4 levels were measured, and Angptl4, integrin β3, fibronectin, and podocin levels in renal tissue were analysed by Western blotting. In vitro, podocytes are stimulated with high glucose and then treated with UCMSCs, and podocyte activity and the expression of synaptopodin, Angptl4, and integrin β3 were observed. UCMSC significantly improve renal function, pathological injury, and podocyte injury in the ZDF (FA/FA) rats. Western blot revealed increased expression of Angptl4, integrin β3, and fibronectin in renal tissues of the DN group, and UCMSC treatment significantly downregulated those proteins. However, UCMSC showed no effects on serum Angptl4 concentration. Podocin expression in renal tissues was significantly restored by UCMSC treatment. In vitro, podocyte activity was decreased after high glucose stimulation and improved by UCMSC treatment. UCMSC restored the expression of synaptopodin, and Angptl4 and downstream integrin β3 were also inhibited. Our study suggested that UCMSC therapy could improve renal function and renal pathological changes in ZDF (FA/FA) rats. In addition, inhibition of the Angptl4/integrin β3 pathway is the potential mechanism by which UCMSC attenuates podocyte injury in the DN model.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。