Exploring the Mechanisms of Lijin Fang on Treg/Th17 Cell Imbalance in COPD Based on Network Pharmacology.

基于网络药理学探讨利金方对慢性阻塞性肺疾病中Treg/Th17细胞失衡的影响机制

阅读:5
作者:Li Zhan-Hua, Chen Si-Ning, Pan Ling, Liu Rui, Liang Wei, Luo Mei-Qun, Liao Hai-Fei, Feng Jie, Wang Hao-Zhou, Huang Yue-Gan, Zheng Jing-Hui
BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is chronic respiratory disease that severely affects patients' quality of life and is associated with high mortality rates. Investigating the imbalance between regulatory T cells (Tregs) and T helper 17 cells (Th17) in COPD treatment is crucial, as this imbalance plays a significant role in the disease's inflammatory processes. This study explores the therapeutic potential of the traditional Chinese medicine(TCM) formula, Lijin Fang (LJF), focusing on its ability to restore Treg/Th17 balance. METHODS: We employed bioinformatics and in vitro cell experiments to analyze the active components and targets of LJF. Network pharmacology, differential gene expression, pathway enrichment, ROC model prediction, and immune infiltration analyses were conducted, followed by molecular docking studies. Rat peripheral blood mononuclear cells (PBMCs) were cultured and treated with cigarette smoke extract (CSE) and LJF-containing serum, with flow cytometry, ELISA, and Western blotting used to assess relevant markers. RESULTS: Our findings demonstrate that treatment with (10% or 30%)LJF-containing serum significantly increased the proportion of Treg cells while concurrently decreasing Th17 cell populations in the 5%CSE-treated rat PBMC model (p<0.001). We observed a reduction in pro-inflammatory cytokines such as interleukin-17 (IL-17), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β), alongside an increase in the anti-inflammatory cytokine interleukin-10 (IL-10) (p<0.001). Additionally, potential therapeutic targets, including IL-10, potassium voltage-gated channel subfamily N member 4 (KCNN4), and Baculoviral IAP repeat-containing protein 3 (BIRC3), were identified. Molecular docking results indicated stable interactions between IL-10 and BIRC3 with the constituents of LJF. CONCLUSION: This study highlights LJF's anti-inflammatory potential in restoring the Treg/Th17 balance and regulating cytokine expression in COPD.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。