Hepatocyte KCTD17-mediated SERPINA3 inhibition determines liver fibrosis in metabolic dysfunction-associated steatohepatitis.

肝细胞 KCTD17 介导的 SERPINA3 抑制决定了代谢功能障碍相关性脂肪性肝炎中的肝纤维化

阅读:17
作者:Jeong Yelin, Oh Ah-Reum, Jung Young Hoon, Jung Kyung Hee, Lee Seongju, Carrer Michele, Lee Sang Bae, Valenti Luca, Pajvani Utpal B, Kim KyeongJin
Metabolic dysfunction-associated steatohepatitis (MASH) is a leading cause of chronic liver disease. Available therapies show inconsistent results on fibrosis, probably due to heterogeneity in disease trajectory or incomplete understanding of molecular determinants. Here we identified increased KCTD17 levels in patients with MASH, and in dietary rodent models of MASH-such as those fed a diet high in palmitate, sucrose and cholesterol coupled with fructose-containing drinking water or a choline-deficient, L-amino acid-defined, high-fat diet-which showed an inverse correlation with the expression of serine protease inhibitor a3k (SERPINA3 in humans, Serpina3k in mice). KCTD17 depletion increased SERPINA3 levels and reduced liver fibrosis in mice fed a MASH-inducing diet by inhibiting Par2/TGFβ-mediated activation of hepatic stellate cells. Mechanistically, Kctd17 regulates Serpina3k expression by facilitating the ubiquitin-mediated degradation of Zbtb7b, which in turn diminishes Serpina3k secretion. Consequently, pharmacological inhibition of Kctd17 effectively reverses MASH-induced liver fibrosis. In summary, these findings underscore the therapeutic potential of targeting KCTD17 for the treatment of MASH-induced liver fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。