Novel small molecule derivatives improve survivability in the cellular model of Huntington's disease via improving mitochondrial fusion.

新型小分子衍生物通过改善线粒体融合来提高亨廷顿病细胞模型的存活率

阅读:12
作者:Kodam Pradeep, Kumar Vaishali, Pattanayak Paramita, Vitta Praharsh, Chatterjee Tanmay, Maity Shuvadeep
Mitochondrial dysfunction is one of the primary cellular conditions involved in developing Huntington's disease (HD) pathophysiology. The accumulation of mutant huntingtin protein with abnormal PolyQ repeats resulted in the death of striatal neurons with enhanced mitochondrial fragmentation. In search of neuroprotective molecules against HD conditions, we synthesized a set of isoxazole-based small molecules to screen their suitability as beneficial chemicals improving mitochondrial health. Systematic characterization of one of these isoxazole derivatives, C-5, demonstrated improved mitochondrial health with reduced apoptosis via rebalancing fission-fusion dynamics in HD condition. Gene and protein expression analysis confirmed that C-5 treatment enhanced the expression of mitochondrial fusion regulators (MFN1/2) via transcriptional upregulation of PGC-1α, a transcriptional co-activator controlling mitochondrial biogenesis. Collectively, this novel fusion agonist can potentially become a new therapeutic alternative for treating PolyQ-mediated mitochondrial dysfunction, a hallmark of HD pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。