Plant architecture greatly contributes to grain yield, but the epigenetic regulation of plant architecture remains elusive. Here, we identified the maize (Zea mays L.) mutant plant architecture 1 (par1), which shows reduced plant height, shorter and narrower leaves, and larger leaf angles than the wild type. Interestingly, par1 is an epiallele harbouring a de novo CACTA insertion in the intron of the Par1 gene. High DNA methylation levels of the CACTA insertion are associated with strong Par1 expression and normal phenotypes. In contrast, low DNA methylation levels of this insertion are associated with weak Par1 expression and a mutant-like phenotype. The Par1 gene encodes a PfkB-type carbohydrate kinase that converts nucleosides to nucleoside monophosphates both in vitro and in vivo. Additional analyses showed that genes differentially expressed in the par1 mutant are enriched in jasmonic acid (JA) metabolism, and levels of JA metabolites were significantly higher in the mutant than in the wild type. Treatment with either nucleoside monophosphates or a synthetic inhibitor of JA biosynthesis reduced JA levels and partially rescued the mutant phenotype. In summary, we identified an epiallele of a gene encoding a PfkB-type carbohydrate kinase that might affect nucleoside monophosphate and JA levels, thus affecting maize growth.
An epiallele of a gene encoding a PfkB-type carbohydrate kinase affects plant architecture in maize.
编码 PfkB 型碳水化合物激酶的基因的表观等位基因影响玉米的植物结构
阅读:7
作者:Li Ruonan, Xu Yue, Xu Qiang, Tang Jing, Chen Wenqing, Luo Zhixiang, Liu Hongbo, Li Wenqiang, Yan Jianbing, Springer Nathan M, Li Lin, Li Qing
| 期刊: | Plant Cell | 影响因子: | 11.600 |
| 时间: | 2024 | 起止号: | 2024 Dec 23; 37(1):koaf017 |
| doi: | 10.1093/plcell/koaf017 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
