In situ epitope tagging is crucial for probing gene expression, protein localization, and the dynamics of protein interactions within their natural cellular context. However, the practical application of this technique in plants presents considerable hurdles. Here, we comprehensively explored the potential of the CRISPR/Cas nuclease-mediated prime editing and different DNA repair pathways in epitope tagging of endogenous rice (Oryza sativa) genes. We found that a SpCas9 nuclease/microhomology-mediated end joining (MMEJ)-based prime editing (PE) strategy (termed NM-PE) facilitates more straightforward and efficient gene tagging compared to the conventional and other derivative PE methods. Furthermore, the PAM-flexible SpRY and ScCas9 nucleases-based prime editors have been engineered and implemented for the tagging of endogenous genes with diverse epitopes, significantly broadening the applicability of NM-PE in rice. Moreover, NM-PE has been successfully adopted in simultaneous tagging of the MAP kinase (MPK) genes OsMPK1 and OsMPK13 in rice plants with c-Myc and HA tags, respectively. Taken together, our results indicate great potential of the NM-PE toolkit in the targeted gene tagging for Rice Protein Tagging Project, gene function study and genetic improvement.
Efficient in situ epitope tagging of rice genes by nuclease-mediated prime editing.
利用核酸酶介导的先导编辑技术对水稻基因进行高效的原位表位标记
阅读:7
作者:Li Xueqi, Zhang Sujie, Wang Chenyang, Ren Bin, Yan Fang, Li Shaofang, Spetz Carl, Huang Jinguang, Zhou Xueping, Zhou Huanbin
| 期刊: | Plant Cell | 影响因子: | 11.600 |
| 时间: | 2025 | 起止号: | 2025 Feb 13; 37(2):koae316 |
| doi: | 10.1093/plcell/koae316 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
