Exploring the glucose-lowering and anti-inflammatory immune mechanism of artemether by AMPK/mTOR pathway and microbiome based on multi-omics.

基于多组学方法,探索蒿甲醚通过 AMPK/mTOR 通路和微生物组发挥降血糖和抗炎免疫作用的机制

阅读:5
作者:Jiang Tao, Du Peipei, Liu Dongxia, Chen Hetao, Ma Yujin, Hu Bin, Li Jingna, Jiang Hongwei, Li Xuejiao
BACKGROUND: Diabetes mellitus (DM) is a metabolic disease with high morbidity, which significantly affects human life and health expenditures. Previous studies have demonstrated that artemether (ATM) has anti-diabetes and anti-inflammation activities, but its mechanism has not been fully elucidated. This research aimed to elucidate the impact of ATM on glucolipid metabolism in a type 2 diabetes mellitus (T2DM) model db/db mice and what kind of role the gut microbiota played, and explored the underlying mechanisms involved. METHODS: C57BL/KsJ-db/db mice were treated with 80 and 160 mg/kg of ATM for 8 weeks, with metformin as a positive control. RESULTS: ATM treatment (160 mg/kg) observably ameliorated insulin resistance (IR), hyperglycemia, hyperlipemia and pathological injury in the liver and pancreas. In addition, ATM significantly decreased the expression of TNF-α, IL-1β, IL-6, NF-κB and IL-17A, and significantly increased the level of IL-10 in diabetic mice. 16S rRNA sequencing and targeted GC-MS metabolomics result indicated that ATM restored gut microbiota dysbiosis based on increasing beneficial bacteria Lactobacillus and reducing pathogenic bacteria Helicobacter and Prevotella leading to the accumulation of propionic and valeric acids and the reduction of lipopolysaccharides (LPS) release, intestinal inflammation and intestinal barrier damage. Network pharmacology and metabolomics identified the AMPK/mTOR pathway as the main signaling involved in ATM improves glucolipid metabolism and inflammation in T2DM. Western blotting results revealed that ATM suppressed the phosphorylation of mTOR, P38, P65, IKBα and IRS1 whlie increased the levels of p-AMPK, TLR4, and occludin in mice liver and colon. CONCLUSION: Taken together, ATM may modulate the composition of gut microbiota, increasing the abundance of Lactobacillus, which in turn elevates the levels of SCFAs. The elevation of SCFAs, especially propionic acid, may activate the AMPK/mTOR pathway, leading to a decrease in the levels of TNF-α, IL-1β, IL-6, NF-κB, and IL-17A, while increasing the levels of IL-10, thereby alleviating the inflammatory state and improving glucolipid metabolic disorder in T2DM. These findings laid a theoretical foundation for the clinical application of ATM in T2DM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。