Hyperuricemia Facilitates Uric Acid-Mediated Vascular Endothelial Cell Damage by Inhibiting Mitophagy.

高尿酸血症通过抑制线粒体自噬促进尿酸介导的血管内皮细胞损伤

阅读:6
作者:Wu Gang, Liu Jun, Ma Guirong, Wei Qiuyu, Song Xinghui
Hyperuricemia remains an elusive factor in the pathogenesis of vascular endothelial injury. This study elucidates the role of hydroxychloroquine (HCQ) in the context of uric acid (UA)-induced vascular endothelial cell damage. Human umbilical vein endothelial cells (HUVECs) were exposed to varying UA concentrations (6 mg/dL to 50 mg/dL) for 48 h, or to 50 mg/dL UA for different time points (6 to 72 h). We observed a concentration- and time-dependent inhibition of cell proliferation, particularly at 40 mg/dL and 50 mg/dL UA. The autophagy marker LC3 exhibited reduced fluorescence intensity post-UA treatment, along with decreased expression of LC3-II/LC3I, beclin1, and p62, indicating impaired autophagy. The mechanistic exploration revealed that HCQ, in conjunction with the mitochondrial autophagy inhibitor Cyclosporine A (CsA), exacerbated the inhibitory effects of UA on HUVEC autophagy. This was evidenced by a further reduction in mitochondrial autophagy-related proteins and diminished fluorescence of LC3-II/LC3-I and Parkin, culminating in suppressed cell proliferation and accelerated cell senescence and apoptosis. Conversely, the co-treatment with the mitochondrial autophagy inducer carbonyl cyanide m-chlorophenyl hydrazine (CCCP) and HCQ mitigated the detrimental effects of UA on HUVEC autophagy. This intervention led to increased expression of PINK1, Parkin, Bnip3, and Nix, along with enhanced fluorescence of LC3-II/LC3-I and Parkin, effectively inhibiting cell senescence and apoptosis while promoting cell proliferation. In conclusion, our findings underscore the pivotal role of HCQ in modulating UA-mediated vascular endothelial cell damage through the inhibition of mitophagy, providing novel insights into the therapeutic potential of targeting HCQ in the management of hyperuricemia-associated vascular complications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。