Saikosaponin‑D triggers cancer cell death by targeting the PIM1/c-Myc axis to reprogram oncogenic alternative splicing.

柴胡皂苷D通过靶向PIM1/c-Myc轴重编程致癌选择性剪接,从而触发癌细胞死亡

阅读:5
作者:Zhang Xin, Li Xuehui, Zhang Feng, Yang Dejun, Sun Qiang, Wei Yuang, Yan Ronglin, Xu Dongliang, Lin Shan, Yuan Fuwen, Wang Weijun
Saikosaponins (SSs, including SSA, SSB, SSC, and SSD), the major bioactive compounds in the traditional medicine Radix Bupleuri, are emerging agents exhibiting anti-tumor efficacy in several cancers. However, the respective anti-tumor efficacy of these agents and mechanisms in cancers remains unclear. Here, we reported that SSD, among SSs, possessed a significant anti-tumor role across different cancer types in vivo and in vitro by downregulating alternative splicing factors and rewiring oncogenic alternative splicing events. Mechanistically, SSD directly targets PIM1 and blocks the interaction between PIM1 and Myc, and decreases PIM1-mediated Myc phosphorylation at serine 62 and Myc protein stability, resulting in global restraining of Myc-governed alternative splicing factors transcription and inducing oncogenic alternative splicing rewiring. Transcript-specific ablation of SSD-regulated alternative spliced products with CIRSPR-Cas13 or targeting PIM1/Myc with specific small inhibitors significantly desensitizes cancer cells and patient-derived organoids (PDOs) to SSD treatments. These studies demonstrated the potent anti-tumor efficacy of SSD and exposed a PIM1/Myc axis by which SSD modulates the expression of an oncogenic alternative splicing regulatory network that mediates SSD's anti-tumor role in cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。