YME1L1 Dysfunction Associated With 3-Methylglutaconic Aciduria.

YME1L1 功能障碍与 3-甲基戊二酸尿症相关

阅读:9
作者:Demetriadou Anthi, Grafakou Olga, Georgiou Theodoros, Burska Daniela, Malekkou Anna, Krizova Jana, Paramera Efstathia, Mavrikiou Gavriella, Dionysiou Maria, Theodosiou Athina, Sismani Carolina, Anastasiadou Violetta, Ioannou Ioannis, Papakonstantinou Evangelos, Hansikova Hana, Drousiotou Anthi, Petrou Petros P
3-methylglutaconic aciduria (3-MGCA) is a biochemical finding in a diverse group of inherited metabolic disorders. Conditions manifesting 3-MGCA are classified into two major categories, primary and secondary. Primary 3-MGCAs involve two inherited enzymatic deficiencies affecting leucine catabolism, whereas secondary 3-MGCAs comprise a larger heterogeneous group of conditions that have in common compromised mitochondrial energy metabolism. Here, we report 3-MGCA in two siblings presenting with sensorineural hearing loss and neurological abnormalities associated with a novel, homozygous missense variant (c.1999C>G, p.Leu667Val) in the YME1L1 gene which encodes a mitochondrial ATP-dependent metalloprotease. We show that the identified variant results in compromised YME1L1 function, as evidenced by abnormal proteolytic processing of substrate proteins, such as OPA1 and PRELID1. Consistent with the aberrant processing of the mitochondrial fusion protein OPA1, we demonstrate enhanced mitochondrial fission and fragmentation of the mitochondrial network in patient-derived fibroblasts. Furthermore, our results indicate that YME1L1(L667V) is associated with attenuated activity of rate-limiting Krebs cycle enzymes and reduced mitochondrial respiration, which may explain the build-up of 3-methylglutaconic and 3-methylglutaric acid due to the diversion of acetyl-CoA, not efficiently processed in the Krebs cycle, towards the formation of 3-methylglutaconyl-CoA, the precursor of these metabolites. In summary, our findings classify YME1L1 deficiency as a new type of secondary 3-MGCA, thus expanding the genetic landscape and facilitating the diagnosis of inherited metabolic disorders featuring this biochemical phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。