AKT (protein kinase B) activation reduces the harmful effects of advanced glycation end products (AGEs); however, the protective mechanisms remain unknown. In cultured human aortic endothelial cells (HAECs), we investigated how AKT signaling suppresses AGEs-induced intercellular adhesion molecule-1 (ICAM-1) expression. AGEs of bovine serum albumin (AGE-BSA) increased ICAM-1 expression, but this effect was abolished by pretreatment with the AKT activator SC79. SC79 activated AKT1, AKT2, and AKT3, translocated a disintegrin and metalloprotease 10 (ADAM10) to the cell surface, and induced ectodomain shedding of the receptor for AGEs (RAGE). In contrast, GI 254023X-mediated ADAM10 inhibition and siRNA-mediated ADAM10 knockdown both prevented SC79-induced RAGE ectodomain shedding. On the other hand, MK-2206, a pan-AKT inhibitor, and siRNA-mediated knockdown of AKT1, AKT2, or AKT3 prevented SC79-induced ADAM10 cell surface translocation and RAGE ectodomain shedding. Notably, Rab14 was co-immunoprecipitated with ADAM10. Following SC79 treatment, Rab14 moved to the cell surface, whereas siRNA-mediated Rab14 knockdown prevented SC79 from promoting ADAM10 cell surface translocation and RAGE ectodomain shedding and abolished SC79's ability to inhibit AGE-BSA-induced ICAM-1 expression. In conclusion, upon activation of all three isoforms, AKT suppresses AGE-BSA-induced ICAM-1 expression by inducing ADAM10-mediated RAGE ectodomain shedding. This occurs because AKT signaling boosts Rab14-dependent ADAM10 cell surface translocation.
AKT activation triggers Rab14-mediated ADAM10 translocation to the cell surface in human aortic endothelial cells.
AKT 激活可触发 Rab14 介导的 ADAM10 转位至人主动脉内皮细胞的细胞表面
阅读:4
作者:Baek Chung Hee, Kim Hyosang, Moon Soo Young, Lee Eun Kyoung, Yang Won Seok
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 3; 15(1):7448 |
| doi: | 10.1038/s41598-025-90624-w | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
