Gram-positive probiotics improves acetaminophen-induced hepatotoxicity by inhibiting leucine and Hippo-YAP pathway.

革兰氏阳性益生菌通过抑制亮氨酸和 Hippo-YAP 通路来改善对乙酰氨基酚引起的肝毒性

阅读:7
作者:Gao Wenkang, Wang Gang, Yuan Hang, Chen Yue, Che Jiake, Cheng Zilu, Chen Liuying, Zhang Li, Zhu Yuanqing, Liu Xin, Liu Ao, Yang Quancheng, Cao Peng, Qian Wei, Huang Weiyan, Schnabl Bernd, Yang Ling, Chu Huikuan
OBJECTIVES: Drug-induced liver injury (DILI) can be improved by modulating gut microbiota. We aimed to investigate a probiotic mixture comprising Bifidobacterium Longum, Streptococcus thermophilus, and Lactobacillus delbrueckii subspecies bulgaricus (BSL) in mitigating acetaminophen induced liver injury (AILI), and to elucidate the underlying mechanisms. METHODS: Gut bacterial communities were analyzed in fecal samples from patients with DILI and healthy controls. Mice were pretreated with BSL or PBS for 10 days, then subjected to a single dose of acetaminophen (300 mg/kg) gavage and euthanized 24 h later. Transcriptome sequencing, microbiome, and metabolome sequencing were performed on mouse samples, respectively. RESULTS: Gut bacterial dysbiosis existed in DILI patients, with a decrease in Gram-positive bacteria and an increase in Gram-negative bacteria. A similar situation occurred in AILI mice. Pretreatment of BSL significantly improved APAP-induced disorders of gut bacteria and alleviated hepatic inflammation and necrosis. Transcriptome sequencing showed that BSL inhibited the hepatic damage pathways, such as Hippo and TGF-β signaling pathway. Metabolomic profiling revealed an obvious increase in oligopeptides containing branched-chain amino acids (BCAAs) in AILI mice, whereas these metabolites were significantly negatively correlated with the abundance of BSL, but positively with key genes of Hippo pathway. In vitro experiments showed that leucine exerted a dose-related exacerbation pattern on APAP-mediated hepatocellular injury. Mice supplemented with leucine resulted in the further overexpression of Yes-associated protein, an increase in oxidative stress, and a worsening of AILI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。