MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored. Bioinformatics and confirmatory experiments revealed that miR-32533 had a novel 23-base sequence with minimal coding potential, functioning within the Drosha ribonuclease III (Drosha)/Dicer 1, ribonuclease III (Dicer)-dependent canonical pathway and identifiable via northern blot. miR-32533 was abundantly brain-distributed and downregulated in diverse AD-related models, including APP/PS1 and five familial AD (5ÃFAD) mouse brains and AD patient plasma. Overexpression or inhibition of miR-32533 led to improvements or exacerbations in cognitive dysfunction, respectively, by modulating Aβ production, apoptosis, oxidation, and neuroinflammation through targeting cAMP-responsive element binding protein 5 (CREB5), which interacted with α disintegrin and metalloproteinase 10 (ADAM10), beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), and presenilin 1 (PS1) promoters, thereby enhancing Aβ production through BACE1 and PS1 upregulation while suppressing non-amyloidogenic amyloid precursor protein (APP) processing via ADAM10 downregulation. Furthermore, modulation of the miR-32533/CREB5 axis ameliorated or worsened cognitive impairment by inhibiting or amplifying Aβ overproduction through the BACE1-involved amyloidogenic and ADAM10-involved non-amyloidogenic pathways. Overall, the findings suggest miR-32533 as a regulator of Aβ metabolism, oxidative stress, and neuroinflammation, establishing the miR-32533/CREB5 signaling pathways as potential therapeutic targets for combating Aβ accumulation and cognitive deficits in AD.
miR-32533 Reduces Cognitive Impairment and Amyloid-β Overload by Targeting CREB5-Mediated Signaling Pathways in Alzheimer's Disease.
miR-32533 通过靶向 CREB5 介导的信号通路来减轻阿尔茨海默病中的认知障碍和淀粉样蛋白-β 过载
阅读:9
作者:Zeng Li, Cai Zhongdi, Liu Jianghong, Zhao Kaiyue, Liang Furu, Sun Ting, Li Zhuorong, Liu Rui
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Mar;12(10):e2409986 |
| doi: | 10.1002/advs.202409986 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
