Total parenteral nutrition (TPN) provides lifesaving nutritional support intravenously; however, it is associated with significant side effects. Given gut microbial alterations noted with TPN, we hypothesized that transferring fecal microbiota from healthy controls would restore gut-systemic signaling in TPN and mitigate injury. Using our novel ambulatory model (US Patent: US 63/136,165), 31 piglets were randomly allocated to enteral nutrition (EN), TPN only, TPN + antibiotics (TPN-A), or TPN + intraduodenal fecal microbiota transplant (TPN + FMT) for 14 days. Gut, liver, and serum were assessed through histology, biochemistry, and qPCR. Stool samples underwent 16 s rRNA sequencing. Permutational multivariate analysis of variance, Jaccard, and Bray-Curtis metrics were performed. Significant bilirubin elevation in TPN and TPN-A versus EN (P < 0.0001) was prevented with FMT. IFN-G, TNF-α, IL-β, IL-8, and lipopolysaccharide (LPS) were significantly higher in TPN (P = 0.009, P = 0.001, P = 0.043, P = 0.011, P < 0.0001), with preservation upon FMT. Significant gut atrophy by villous-to-crypt ratio in TPN (P < 0.0001) and TPN-A (P = 0.0001) versus EN was prevented by FMT (P = 0.426 vs. EN). Microbiota profiles using principal coordinate analysis demonstrated significant FMT and EN overlap, with the largest separation in TPN-A followed by TPN, driven primarily by Firmicutes and Fusobacteria. TPN-altered gut barrier was preserved upon FMT; upregulated cholesterol 7 α-hydroxylase and bile salt export pump in TPN and TPN-A and downregulated fibroblast growth factor receptor 4, EGF, farnesoid X receptor, and Takeda G Protein-coupled Receptor 5 (TGR5) versus EN was prevented by FMT. This study provides novel evidence of prevention of gut atrophy, liver injury, and microbial dysbiosis with intraduodenal FMT, challenging current paradigms into TPN injury mechanisms and underscores the importance of gut microbes as prime targets for therapeutics and drug discovery.NEW & NOTEWORTHY Intraduodenal fecal microbiota transplantation presents a novel strategy to mitigate complications associated with total parenteral nutrition (TPN), highlighting gut microbiota as a prime target for therapeutic and diagnostic approaches. These results from a highly translatable model provide hope for TPN side effect mitigation for thousands of chronically TPN-dependent patients.
Intraduodenal fecal microbiota transplantation ameliorates gut atrophy and cholestasis in a novel parenteral nutrition piglet model.
十二指肠内粪便微生物移植可改善新型肠外营养仔猪模型中的肠道萎缩和胆汁淤积
阅读:4
作者:Manithody Chandrashekhara, Denton Christine, Mehta Shaurya, Carter Jasmine, Kurashima Kento, Bagwe Ashlesha, Swiderska-Syn Marzena, Guzman Miguel, Besmer Sherri, Jain Sonali, McHale Matthew, Qureshi Kamran, Nazzal Mustafa, Caliskan Yasar, Long John, Lin Chien-Jung, Hutchinson Chelsea, Ericsson Aaron C, Jain Ajay Kumar
| 期刊: | American Journal of Physiology-Gastrointestinal and Liver Physiology | 影响因子: | 3.300 |
| 时间: | 2024 | 起止号: | 2024 Nov 1; 327(5):G640-G654 |
| doi: | 10.1152/ajpgi.00012.2024 | 研究方向: | 微生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
