Suppression of NF-κB/NLRP3 by nanoligomer therapy mitigates ethanol and advanced age-related neuroinflammation

纳米寡聚体疗法抑制NF-κB/NLRP3可减轻乙醇和老年相关的神经炎症

阅读:1
作者:Paige E Anton ,Shannon Twardy ,Prashant Nagpal ,Julie A Moreno ,Matthew A Burchill ,Anushree Chatterjee ,Nicolas Busquet ,Michael Mesches ,Elizabeth J Kovacs ,Rebecca L McCullough
Binge alcohol use is increasing among aged adults (>65†yr). Alcohol-related toxicity in aged adults is associated with neurodegeneration; yet, the molecular underpinnings of this age-related sensitivity to alcohol are not well described. Studies utilizing rodent models of neurodegenerative disease reveal heightened activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Nod-like receptor 3 (NLRP3) mediate microglia activation and associated neuronal injury. Our group, and others, have implicated hippocampal-resident microglia as key producers of inflammatory mediators; yet, the link between inflammation and neurodegeneration has not been established in models of binge ethanol exposure and advanced age. Here, we report binge ethanol increased the proportion of NLRP3+ microglia in the hippocampus of aged (18 to 20†mo) female C57BL/6N mice compared with young (3 to†4 mo). In primary microglia, ethanol-induced expression of reactivity markers and NLRP3 inflammasome activation were more pronounced in microglia from aged mice compared with young. Using a NLRP3-specific inhibitor (OLT1177) and a novel brain-penetrant Nanoligomer that inhibits NF-κB and NLRP3 translation (SB_NI_112), we find ethanol-induced microglial reactivity can be attenuated by OLT1177 and SB_NI_112 in microglia from aged mice. In a model of intermittent binge ethanol exposure, SB_NI_112 prevented ethanol-mediated microglia reactivity, IL-1β production, and tau hyperphosphorylation in the hippocampus of aged mice. These data suggest early indicators of neurodegeneration occurring with advanced age and binge ethanol exposure are driven by NF-κB and NLRP3. Further investigation is warranted to explore the use of targeted immunosuppression via Nanoligomers to attenuate neuroinflammation after alcohol consumption in the aging populations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。