Synthesis and Antioxidant Effects of Edaravone-Loaded MPEG-2000-DSPE Micelles in Rotenone-Induced PC12 Cell Model of Parkinson's Disease.

依达拉奉负载的MPEG-2000-DSPE胶束在鱼藤酮诱导的PC12细胞帕金森病模型中的合成及抗氧化作用

阅读:4
作者:Luo Xin, Luo Linshan, Lai Rong, Li Yan, Zhou Hongyan, Li Xiting
Parkinson's disease (PD) is the second most common neurodegenerative disorder globally that lacks any disease-modifying drug for prevention or treatment. Oxidative stress has been identified as one of the key pathogenic drivers of Parkinson's disease (PD). Edaravone, an approved free-radical scavenger, has proven to have potential against PD by targeting multiple key pathologies, including oxidative stress, focal mitochondria, and neuroinflammation. However, its bioavailability is potentially restricted due to its poor solubility and short half-life. This study aims to develop a simple and effective drug delivery system for edaravone to enhance its solubility, stability, and bioavailability to improve its neuroprotective efficacy. An MPEG-2000-DSPE-edaravone (MDE) micelle was prepared via solvent evaporation using MPEG-2000-DSPE as a carrier to encapsulate edaravone. The morphology, particle size, zeta potential, chemical structure, and edaravone loading of MDE were evaluated. We then investigated whether such targeted edaravone delivery could provide enhanced neuroprotection. A cell model of PD was established in PC12 cells through exposure to rotenone. The effects of MDE on PC12 cells treated with or without rotenone were evaluated using a cell counting kit-8, calcein acetoxymethyl ester (AM)-propidine iodide (PI) staining, and flow cytometry. Cell migration was evaluated using a wound healing assay. Additionally, the intracellular antioxidant study was performed using an ROS-level-detecting DCFH-DA probe, and the mitochondrial membrane potentials were evaluated using a JC-1 assay. MDE with a drug-loading content of 17.6% and an encapsulation efficiency of 92.8% was successfully prepared. The resultant MDE had a mean particle size of 112.97 ± 5.54 nm with a zeta potential of -42 mV. Cytotoxicity assays confirmed that the MDE (≤200 ug/mL) exhibited promising cytocompatibility with no significant effect on cell viability, cell cycle regulation, or apoptosis levels. Likewise, compared with the free edaravone, no effect on cell migration was noted for MDE. MDE might be able to target edaravone delivery into PC12 cells, increasing the mitochondrial membrane potential and providing a significant local antioxidant effect. The results demonstrated that MPEG-2000-DSPE could be a promising material for enhancing edaravone's aqueous solubility, stability, and antioxidant effects. MDE could be a potential drug formulation for treating PD and other diseases in which oxidative stress plays a key role in pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。