Multi‑omics identification of a signature based on malignant cell-associated ligand-receptor genes for lung adenocarcinoma.

基于恶性细胞相关配体受体基因的多组学鉴定肺腺癌特征

阅读:3
作者:Xu Shengshan, Chen Xiguang, Ying Haoxuan, Chen Jiarong, Ye Min, Lin Zhichao, Zhang Xin, Shen Tao, Li Zumei, Zheng Youbin, Zhang Dongxi, Ke Yongwen, Chen Zhuowen, Lu Zhuming
PURPOSE: Lung adenocarcinoma (LUAD) significantly contributes to cancer-related mortality worldwide. The heterogeneity of the tumor immune microenvironment in LUAD results in varied prognoses and responses to immunotherapy among patients. Consequently, a clinical stratification algorithm is necessary and inevitable to effectively differentiate molecular features and tumor microenvironments, facilitating personalized treatment approaches. METHODS: We constructed a comprehensive single-cell transcriptional atlas using single-cell RNA sequencing data to reveal the cellular diversity of malignant epithelial cells of LUAD and identified a novel signature through a computational framework coupled with 10 machine learning algorithms. Our study further investigates the immunological characteristics and therapeutic responses associated with this prognostic signature and validates the predictive efficacy of the model across multiple independent cohorts. RESULTS: We developed a six-gene prognostic model (MYO1E, FEN1, NMI, ZNF506, ALDOA, and MLLT6) using the TCGA-LUAD dataset, categorizing patients into high- and low-risk groups. This model demonstrates robust performance in predicting survival across various LUAD cohorts. We observed distinct molecular patterns and biological processes in different risk groups. Additionally, analysis of two immunotherapy cohorts (N = 317) showed that patients with a high-risk signature responded more favorably to immunotherapy compared to those in the low-risk group. Experimental validation further confirmed that MYO1E enhances the proliferation and migration of LUAD cells. CONCLUSION: We have identified malignant cell-associated ligand-receptor subtypes in LUAD cells and developed a robust prognostic signature by thoroughly analyzing genomic, transcriptomic, and immunologic data. This study presents a novel method to assess the prognosis of patients with LUAD and provides insights into developing more effective immunotherapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。