Matrix Viscoelasticity Orchestrates Osteogenesis via Mechanotransduction Mediated Metabolic Switch in Macrophages.

基质粘弹性通过巨噬细胞中机械转导介导的代谢转换来调控成骨作用

阅读:6
作者:Tao Dihao, Wang Hanzhe, Chang Shiping, Cheng Jiayu, Da Ningning, Zhang Li, Yang Jianhua, Wang Wenzhe, Xu Feng, Li Bei
Understanding the interplay between extracellular matrix (ECM) mechanics and macrophage cellular processes is crucial for bone regeneration. While ECM stiffness has been extensively studied, the role of ECM viscoelasticity (e.g., stress relaxation) in the bone marrow niche and its effects on macrophage function remain unclear. Here, this study reveals how matrix viscoelasticity orchestrates osteogenesis by modulating macrophage metabolism through vasodilator-stimulated phosphoprotein (VASP) / hypoxia-inducible factor 1 alpha (HIF1α) signaling. In the rapid maxillary expansion (RME) model, significant stress relaxation occurs in regenerated bone marrow during the initial 17 days, coinciding with increased transforming growth factor-beta 1 (TGF-β1(+)) F4/80+ macrophages. Fast stress relaxation enhances macrophage recruitment of mesenchymal stem cells (MSCs) by upregulating TGF-β1. Using a hydrogel-macrophage system mimicking bone marrow viscoelasticity, cranial defect regeneration is significantly improved. Moreover, fast stress relaxation shifts macrophage metabolism from glycolysis to oxidative phosphorylation (OXPHOS) via VASP/HIF1α signaling, facilitating a reparative phenotype. These findings elucidate the relationship between ECM viscoelasticity and macrophage metabolism, suggesting new therapeutic avenues for bone regeneration through mechanomedicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。