Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. While radiotherapy is an adjuvant treatment option for OS, particularly in cases of unresectable recurrent metastases, its efficacy remains limited. Enhancing radiosensitivity in OS cells is therefore crucial for improving treatment outcomes. Hafnium oxide, a known radiosensitizer, has demonstrated potential but its current formulation restricts its use to intratumoral administration, posing challenges for treating intraosseous tumors. The development of an intravenous formulation is thus highly desirable. Furthermore, radiotherapy resistance, driven by tumor hypoxia and an immunosuppressive microenvironment, further compromises its effectiveness. In this study, we synthesized hafnium-doped Prussian blue nanoparticles (HP) coated with a tannic acid-manganese metallophenol network (HPTM) to improve biocompatibility and enable intravenous administration. Following intravenous injection in a murine model of OS tibialis in situ tumors with lung metastases, HPTM effectively localized to the primary tumor. Within the acidic tumor microenvironment, manganese was released, activating the STING pathway and triggering anti-tumor immune responses. Moreover, near-infrared light irradiation of the Prussian blue component induced a photothermal effect, promoting apoptosis. Concurrently, under low-dose X-ray irradiation, HPTM augmented radiation energy deposition, generating reactive oxygen species and inducing DNA damage in tumor cells. This synergistic therapeutic approach significantly increased apoptosis in radiotherapy-resistant OS cells, reduced lung metastases, and suppressed primary tumor growth. These findings suggest a promising avenue for clinical translation, integrating radiosensitization, photothermal therapy, and STING pathway activation to overcome current limitations in OS radiotherapy.
Novel intravenous formulation for radiosensitization in osteosarcoma treatment.
用于骨肉瘤治疗中放射增敏的新型静脉制剂
阅读:11
作者:Zeng Haitao, Feng Huixiong, Zhang Chong, Kang Zhe, Wu Jianping, Zhao Xingqi, Huang Anfei, Xu Yanyang, Huang Yufeng, Xu Hongwen, Gong Ming
| 期刊: | Materials Today Bio | 影响因子: | 10.200 |
| 时间: | 2025 | 起止号: | 2025 Mar 18; 32:101682 |
| doi: | 10.1016/j.mtbio.2025.101682 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
