While gene-editing-based tumor therapy holds promise, conventional passive-diffusion vectors face limited penetration in dense solid tumors. Here, we developed a ROS-driven gene editing nanomotor (RDN@PL), which takes hemin as the core and encapsulates CRISPR/Cas9 plasmids targeting LDHA (A glycolysis key enzyme). In tumor microenvironments, RDN@PL consumes extracellular ROS to fuel self-diffusiophoresis, achieving higher intratumoral accumulation than passive particles. Upon internalization, heme oxygenase-1 (HO-1) degrades RDN@PL, releasing CO and plasmids. LDHA knockout suppresses glycolysis while CO elevates mitochondrial ROS, which triggers apoptosis by disrupting metabolism and enhancing immunity. Simultaneously, extracellular ROS depletion by non-internalized nanomotors reverses immunogenic cell death (ICD) inhibition, enhancing CD8+ T cell infiltration in tumor. The Janus nanomotor enables extracellular ROS scavenging and intracellular ROS increment via HO-1-responsive cargo release and gene editing. This multi-level intervention strategy demonstrates 93.9 % tumor growth suppression in solid tumor models, providing a blueprint for engineering intelligent nanovesicles in precision oncology.
Reactive oxygen species responsive nanomotors for gene edited metabolic disruption and immunotherapy.
用于基因编辑代谢紊乱和免疫疗法的活性氧响应纳米马达
阅读:7
作者:Liu Zhiyong, Luan Xiaowei, Lu Qianglan, Qin Shurong, Zeng Fei, Li Zhi, He Bangshun, Song Yujun
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 May 21; 16(1):4708 |
| doi: | 10.1038/s41467-025-59590-9 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
