Natural products have extensive attractiveness as therapeutic agents due to their low toxicity and high efficiency. Our previous study has identified a depside-type Aspergillusidone G (Asp G) derived from Aspergillus unguis DLEP2008001, which shows excellent neuroprotective activity for 1-methyl-4-phenylpyridinium (MPP(+))-induced primary cortical neurons and anti-neuroinflammatory property, promising to be a potential therapeutic agent for Parkinson's disease (PD). To further explore the anti-PD potential and mechanisms of Asp G, we employed network pharmacology, cellular experiments, and various biological techniques for analysis and validation. The analysis of network pharmacology suggested that Asp G's anti-PD potential might be attributed to its modulation of inflammation. The data from nitric oxide (NO) detection, qRT-PCR, and Western blot confirmed that Asp G dose-dependently inhibited lipopolysaccharide (LPS)-stimulated NO production, with 40 μM Asp G suppressing 90.54% of the NO burst compared to the LPS group, and suppressed the overproduction of inflammatory-related factors in LPS-induced BV2 cells. Further protein-protein interaction analysis indicated that matrix metalloproteinase 9 (MMP9), a promising target for PD intervention, was the most likely anti-PD target of Asp G, and the results of gelatin zymography, qRT-PCR, and Western blot validated that Asp G could inhibit the active and inactive forms of MMP9 directly and indirectly, respectively. Notably, the inhibition of 67 kDa-MMP9 by Asp G is expected to compensate for the inability of TIMP-1 to inhibit this form. Furthermore, a selective inhibitor of MMP9 (20 μM SB-3CT) further potentiated the anti-inflammatory effects of Asp G (20 μM), with inhibition rate on NO increasing from 27.57% to 63.50% compared to LPS group. In summary, our study revealed that Asp G exerts anti-neuroinflammatory effects by inhibiting MMP9, which provides a valuable lead compound for the development of anti-neuroinflammatory drugs and offers insights into the intervention of PD-associated neuroinflammation. Future studies will further investigate the upstream regulatory mechanisms of Asp G-mediated MMP9 inhibition and its effects in in vivo PD models.
Aspergillusidone G Exerts Anti-Neuroinflammatory Effects via Inhibiting MMP9 Through Integrated Bioinformatics and Experimental Analysis: Implications for Parkinson's Disease Intervention.
通过整合生物信息学和实验分析,曲霉酮 G 通过抑制 MMP9 发挥抗神经炎症作用:对帕金森病干预的启示
阅读:4
作者:Ban Fangfang, Zhou Longjian, Yang Zhiyou, Liu Yayue, Zhang Yi
| 期刊: | Marine Drugs | 影响因子: | 5.400 |
| 时间: | 2025 | 起止号: | 2025 Apr 23; 23(5):181 |
| doi: | 10.3390/md23050181 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
