GNA15 induces drug resistance in B cell acute lymphoblastic leukemia by promoting fatty acid oxidation via activation of the AMPK pathway.

GNA15 通过激活 AMPK 通路促进脂肪酸氧化,从而诱导 B 细胞急性淋巴细胞白血病产生耐药性

阅读:5
作者:Luo Jie, Pan Shirui, Luo Jing, Wang Lan, Yin Jiaxiu, Zhao Haiqiu, Su Rong, Liao Mingyan, Liu Lin, Zhang Jiamin
The prognosis of B cell acute lymphoblastic leukemia (B-ALL) is poor, primarily due to drug resistance and relapse. Ga15, encoded by GNA15, belongs to the G protein family, with G protein-coupled receptors playing a crucial role in multiple biological process. GNA15 has been reported to be involved in various malignancies; however, its potential role in B-ALL remain unknown. In this study, high expression of GNA15 in B-ALL was observed in multiple databases. We further confirmed an increased transcriptional level of GNA15 in newly diagnosed B-ALL patients which was closely correlated with relapse. We showed that GNA15 promoted cell growth, inhibited apoptosis and enhanced drug resistance in leukemia cell lines. Metabolomics analysis revealed a significant enrichment of fatty acid oxidation (FAO) according to the GNA15 expression. We further confirmed that GNA15 could enhance FAO process as evidenced by the upregulation of key molecules involved in FAO including carnitine palmitoyl transferase1 (CPT1), CPT2 and CD36. And inhibition of FAO using etomoxir partially reversed the drug resistance caused by high expression of GNA15. Mechanism study showed that GNA15 promoted FAO by up-regulation of AMPK phosphorylation thus leading to survival advantage in leukemia cells. In conclusion, we observed elevated GNA15 transcript levels in B-ALL, which were associated with relapse. GNA15 could induce drug resistance though activation of the AMPK/FAO axis in leukemia cell lines. Targeting GNA15 and FAO may represent potential therapeutic strategy for improving the prognosis of B-ALL.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。