Xiahuo Pingwei San attenuated intestinal inflammation in dextran sulfate sodium-induced ulcerative colitis mice through inhibiting the receptor for advanced glycation end-products signaling pathway.

夏火平胃散通过抑制晚期糖基化终产物受体信号通路,减轻葡聚糖硫酸钠诱导的溃疡性结肠炎小鼠的肠道炎症

阅读:22
作者:Jiaen Huang, Qing Luo, Gengting Dong, Weiwen Peng, Jianhong H E, Weibo Dai
OBJECTIVE: To evaluate the therapeutic effects of Xiahuo Pingwei San (, XHPWS) on ulcerative colitis (UC) in mice and to explore the underlying mechanisms through a network pharmacology approach. METHODS: Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was utilized to identify the chemical composition and authenticate the active constituents of XHPWS, ensuring rigorous quality control across batches. A dextran sulfate sodium (DSS)-induced UC model was established in C57BL/6 mice, which were treated with XHPWS in vivo. The efficacy against UC was assessed by measuring parameters such as body weight, disease activity index (DAI) scores, and colon length. Levels of inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α), in colonic tissue were evaluated using enzyme-linked immunosorbent assay (ELISA). Histological analysis of colon sections was conducted using hematoxylin and eosin staining. A network pharmacology approach was employed to explore the mechanisms of XHPWS and to predict its potential targets in UC treatment. Predicted protein expressions in colonic tissue were validated using immune-ohistochemistry (IHC) and Western blotting techniques. RESULTS: XHPWS effectively alle viated DSS-induced UC symptoms in mice, as evidenced by restored body weight, reduced colon shortening, and decreased DAI scores. Histopathological examination revealed that XHPWS significantly reduced intestinal inflammatory infiltration, restored intestinal epithelial permeability, and increased goblet cell count. Network pharmacology analysis identified 63 active compounds in XHPWS and suggested that it might target 35 potential proteins associated with UC treatment. Functional enrichment analysis indicated that the protective mechanism of XHPWS could be related to the advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE) signaling pathway. Notably, quercetin, kaempferol, wogonin, and nobiletin, the main components of XHPWS, showed strong correlations with the core targets. Additionally, experimental validation demonstrated that XHPWS significantly decreased levels of inflammatory cytokines interleukin 6 (IL-6), interleukin 1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α) in UC mice, while downregulating the expression of proteins related to the AGE-RAGE pathway. CONCLUSION: Our study demonstrated that XHPWS effectively alle viates colitis symptoms and inflammation in UC mice, potentially through the regulation of the AGE-RAGE pathway. These findings provide strong evidence for the therapeutic potential of XHPWS in UC treatment, thereby broadening its clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。