The invertebrate neuropeptide F (NPF) signaling plays versatile roles in diverse biological activities and processes. Still, whether and how it mediates feeding and digestion in Pomacea canaliculate remain gaps in our knowledge. Herein, we first identified and characterized PcNPFR via bioinformatics analysis in P. canaliculate, which is a polyphagous herbivore with a voracious appetite that causes devastating damages to ecosystem functioning and services in colonized ranges. Double stranded RNA (dsRNA)-based RNA interference (RNAi) and exogenous rescue were utilized to decipher and substantiate underlying mechanisms whereby NPFR executed its modulatory functions. Multiple sequence alignment and phylogeny indicated that PcNPFR harbored typical seven transmembrane domains (7 TMD) and belonged to rhodopsin-like GPCRs, with amino acid sequence sharing 27.61-63.75% homology to orthologues. Spatio-temporal expression profiles revealed the lowest abundance of PcNPFR occurred in pleopod tissues and the egg stage, while it peaked in male snails and testes. Quantitative real-time PCR (qRT-PCR) analysis showed that 4 µg dsNPFR and 10(-6) M trNPF (NPFR agonist) were optimal doses to exert silencing and rescue effects, accordingly with sampling time at 3 days post treatments. Moreover, the dsNPFR injection (4 µg) at 1/3/5/7 day/s delivered silencing efficiency of 32.20-74.01%. After 3 days upon dsNPFR knockdown (4 µg), mRNA levels of ILP7/InR/Akt/PI3Kc/PI3K(R) were significantly downregulated compared to dsGFP controls, except FOXO substantially upregulated at both transcript and translation levels. In addition, the activities of alpha-amylase, protease and lipase were significantly suppressed, accompanied by decreased leaf area consumption, attenuated feeding behavior and diminished feeding rate. Moreover, expression trends were opposite and proxies were partially or fully restored to baseline levels post exogenous compensation of trNPF, suggesting phenotypes specifically attributable to PcNPFR RNAi but not off-target effects. PcNPFR is implicated in both feeding and digestion by modulating the ISP pathway and digestive enzyme activities. It may serve as a promising molecular target for RNAi-based antifeedants to manage P. canaliculate invasion.
Molecular and Functional Characterization of Neuropeptide F Receptor in Pomacea canaliculata: Roles in Feeding and Digestion and Communication with the Insulin Pathway.
福寿螺神经肽F受体的分子和功能特征:在摄食和消化中的作用以及与胰岛素通路的通讯
阅读:7
作者:Gu Haotian, Teng Haiyuan, Zhang Tianshu, Yuan Yongda
| 期刊: | Biology-Basel | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Sep 10; 14(9):1241 |
| doi: | 10.3390/biology14091241 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
