γ-Aminobutyric Acid Transporter Mutation GAT1 (S295L) Substantially Impairs Neurogenesis in Dentate Gyrus.

α-氨基丁酸转运蛋白 GAT1 突变 (S295L) 严重损害齿状回的神经发生

阅读:3
作者:Liu Weitong, Yang Yantian, Liu Yichen, Ni Bingyan, Zhuang Hua, Chen Kexin, Shi Jiahao, Zhu Chenxin, Wang Haoyue, Fei Jian
Background: GABAergic signaling plays a crucial role in modulating neuronal proliferation, migration, and the formation of neural network connections. The termination of GABA transmission primarily occurs through the action of GABA transporter 1 (GAT1), encoded by the SLC6A1 gene. Multiple SLC6A1 mutations have been implicated in neurodevelopmental disorders, but their effects on the nervous system are unclear. Methods: We estimated the expression pattern of the GAT1 (S295L) protein using the Slc6a1(S295L/S295L) mouse model via RT-PCR, Western blotting, and confocal immunofluorescence. The effect of GAT1 (S295L) on hippocampal neurogenesis was investigated by neuronal marker staining (Sox2, Tbr2, NeuroD1, DCX, NeuN) and BrdU label experiments. The dendritic complexity was mapped through Sholl analysis. RNA-Seq was utilized to explore the signaling pathways and molecules associated with neurodevelopmental disorders. Results: We detected a remarkable decline in the quantity of type-2b intermediate progenitor cells, neuroblasts, and immature neurons in the dentate gyrus (DG) of Slc6a1(S295L/S295L) mice at 4 weeks. These abnormalities were exacerbated in adulthood, as evidenced by compromised dendritic length and height as well as the complexity of immature neurons. Immunofluorescence staining showed the abnormal aggregation of GAT1 (S295L) protein in neurons. RNA-seq analysis identified pathways associated with neurodevelopment, neurological disorders, protein homeostasis, and neuronutrition. The neurotrophin Bdnf decreased at all ages in the Slc6a1(S295L/S295L) mice. Conclusions: Our data provide new evidence that GAT1 (S295L) causes impaired neurogenesis in the DG. GAT1 mutation not only disrupts GABA homeostasis but also impairs the neurotrophic support necessary for normal hippocampal development, which may be one of the factors contributing to impaired neurogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。