Injectable Piezoelectric Hydrogel Promotes Tendon-Bone Healing via Reshaping the Electrophysiological Microenvironment and M2 Macrophage Polarization.

可注射压电水凝胶通过重塑电生理微环境和M2巨噬细胞极化促进肌腱骨愈合

阅读:7
作者:Li Xiaofei, Liu Yubao, Yang Qining, Zhang Weijian, Wang Haoliang, Zhang Weituo, Li Zhuang, Ji Mingliang, You Yumeng, Lu Jun
Rotator cuff tear (RCT) is a common musculoskeletal disease that poses challenges for functional regeneration of the tendon-bone interface (TBI). The transition of TBI between soft and hard tissues determines its structural and physiological environment complexity. Here, we present an injectable biopiezoelectric material PVA/CNF/BTO@PDA (Piezoelectric) hydrogel based on three-dimensional (3D) printing inspired by the "muscle-electrical coupling". This Piezoelectric hydrogel indicated desirable piezoelectric and mechanical properties, excellent biodegradability, and biosafety. In vitro, electrical stimulation from Piezoelectric hydrogel by the Flexcell Tissue Train system promoted the polarization of macrophages to the M2 phenotype, directing the targeted aggregation and zonal-specific differentiation of bone mesenchymal stem cells (BMSCs) for TBI formation. Also, optimal piezoelectric stimulation of the Piezoelectric hydrogel could alleviate inflammatory factor expression and regulate the osteotendinogenic differentiation of BMSCs under an H(2)O(2)/IL-1β inflammation environment. Furthermore, in vivo application of injectable Piezoelectric hydrogel demonstrates its regenerative potential, indicating that physiological repair with Piezoelectric hydrogel significantly accelerates and promotes TBI healing in a chronic RCT model. Therefore, our findings propose a new therapeutic strategy for functional TBI regeneration and enhance the treatment outcomes for RCT.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。