Genome-Wide Characterization of Soybean 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes Demonstrates the Importance of GmACS15 in the Salt Stress Responses.

大豆 1-氨基环丙烷-1-羧酸合成酶基因的全基因组表征表明 GmACS15 在盐胁迫反应中的重要性

阅读:5
作者:Cheng Peng, Yu Yi-Cheng, Wang Si-Hui, Yang Jun, Zhou Run-Nan, Zhang Xin-Ling, Liu Chun-Yan, Zhang Zhan-Guo, Yang Ming-Liang, Chen Qing-Shan, Wu Xiao-Xia, Zhao Ying
ACS (1-aminocyclopropane-1-carboxylic acid synthase) is a member of the aminotransferase superfamily and a pyridoxal phosphate-dependent enzyme. ACS is also a rate-limiting enzyme for the biosynthesis of ethylene and has been linked with plant development, growth, and stress responses. However, information on ACS genes in the soybean genome is limited. In this study, we identified ACS genes in soybean through phylogenetic trees and conserved motifs and analyzed their cis-acting elements, subcellular localization, and expression patterns. Twenty-two members of the ACS family were identified in soybean, and they were divided into four subfamilies based on phylogenetic relationships. Moreover, the results of Arabidopsis mesophyll protoplasts showed that GmACS1, GmACS8, and GmACS15 were all localized in the nucleus and cell membrane. Cis-regulatory elements and qRT-PCR analyses indicated markedly increased levels of GmACS transcripts under hormone treatments and abiotic stress conditions (drought, alkalinity, and salt). In addition, under different abiotic stresses, the potential functional variations across the GmACS isoforms were mirrored in their differential expression. The analysis of transcriptional response to salinity indicated that salt stress might primarily be mediated by the GmACS15 gene. GmACS15 was also found to reduce salt-induced oxidative damage by modulating the ROS-scavenging system, cellular redox homeostasis, and maintaining intracellular Na(+)/K(+) balance. The results of this investigation revealed the involvement of the ACS gene family in soybean stress-response pathways, including the identification of a potential target for enhancing salt tolerance in soybean.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。