MAGL targeted PROTAC degrader simultaneously enhances P53 for synergistic treatment of glioblastoma stem cell.

MAGL靶向PROTAC降解剂同时增强P53,以协同治疗胶质母细胞瘤干细胞

阅读:4
作者:Yuan Zheng, Guo Meixia, Zhang Yue, Deng Yilin, Sun Biao, Hou Yaning, Wang Xin, Jin Xiong, Liu Yang, Shi Bingyang, Yin Jinlong
Glioblastoma (GBM) stands as the most fatal brain tumor due to limited therapeutic options and high rates of drug resistance. Current surgical and pharmacological interventions usually fail to eradicate the aggressive GBM stem cells (GSCs), which leads to the deadly GBM occurrence. Although proteolysis-targeting chimeras (PROTACs) are prosperous in drug development for tumors, their application in GBM, particularly for GSC-sensitive drug candidates remains in its nascent stages. In this regard, we designed a monoacylglycerol lipase (MAGL) targeting PROTAC, where MAGL was identified as a novel target for GSCs in our previous study. The MAGL inhibitor JZL184 was redesigned by leveraging computational chemistry analysis, and an active unit was engaged for conjugation. E3 ligand for MAGL targeted warhead conjugation was screened with bioinformatics analyses, which revealed heightened activity of the E3 ligase MDM2 in GBM, a classic negative regulator of the tumor suppressor P53, which correlates with patient prognosis. Then the PROTAC was conjugated with JZL184 analog and the MDM2 inhibitor Nutlin-3 analog. Experimental results validated that the designed JN-PROTAC effectively induced MAGL targeted degradation and concomitantly enhanced P53 activation via MDM2 inhibition and is capable of inhibiting the progression of patient-derived GSCs in vivo. This work presents a proof-of-concept PROTAC design tailored for GSCs, potentially addressing the occurrence challenges for GBM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。