Exogenous Mitochondrial Pretreatment Enhances the Therapeutic Effect of UC-MSCs on NAFLD in Type 2 Diabetic Mice by Mediating Mitochondrial Transfer.

外源性线粒体预处理通过介导线粒体转移增强 UC-MSCs 对 2 型糖尿病小鼠 NAFLD 的治疗效果

阅读:5
作者:Hu Ruofan, Zhao Jian, Cheng Yu, Su Wanlu, Ren Rui, Zhang Haixia, Zhang Yue, Wang Anning, Mu Yiming, Yu Songyan
Background: Nonalcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease and is a comorbidity in type 2 diabetes (T2D) mellitus. Mesenchymal stem cell (MSC) is emerging as a potential therapeutic strategy for diabetes and NAFLD through mitochondrial transfer initiated by signaling from injured recipient cells. Thus, in this study, we investigated whether exogenous mitochondrial preconditioning of MSCs could exert superior effects on NAFLD and explore the role of MSCs-mediated mitochondrial transfer into hepatocyte. Methods: After free HepG2 mitochondria pretreated, umbilical cord-derived MSCs (UC-MSCs) (mito-MSCs), T2D model mice were infused with equal amounts of MSCs/mito-MSCs via the tail vein once a week for 4 weeks. Body weight and random blood glucose were monitored weekly. After the end of treatment, the mitochondrial transfer level of MSCs before and after pretreatment were monitored by fluorescence tracing. Blood and liver were collected for biochemical and histopathological examinations. The number, morphology, and function of mitochondria in liver tissue were evaluated by tissue electron microscopy and western blot analysis. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to monitor the expression of genes associated with lipid metabolism and regulation pathways. Results: Pretreatment of UC-MSCs enhanced the efficacy of MSCs in lowering blood glucose, liver transaminase, triglyceride levels, and reducing histological damage, which may be related to free mitochondria triggering autophagy of MSCs, which in turn promoted the entry of MSCs mitochondria into the liver tissue of diabetic mice. Conclusion: Exogenous mitochondria could enhance the therapeutic efficacy of MSCs in NAFLD via mediating mitochondrial transfer, which offers a novel strategy for the improving the outcomes of MSCs cell-therapy for diabetes-related NAFLD.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。